Metallurgical and Materials Transactions A

, Volume 32, Issue 12, pp 3117–3124

Particle rearrangement during powder compaction

  • Jianxin Liu
  • David P. De Lo
Article

Abstract

Densification in powder compaction occurs due to the motion of particle centers toward each other, including particle rearrangement and particle deformation. The process of particle sliding and rearrangement has a critical influence on densification in practice, especially during the first stage of compaction. Analytic models and experimental measurements show that the movements of individual particles within a powder compact cause continuous tightening of the bulk packing state up to a fractional compact density of 0.92. For a mass of powder with an initial packing density of 0.64, up to a 40 pct green density increase during the first stage of densification occurs by particle rearrangement. The present study proposes a parameter, termed the particle-packing factor, that describes the packing state due to both deformation and rearrangement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.F. Fischmeister and E. Artz: Powder Metall., 1983, vol. 26, pp. 82–88.Google Scholar
  2. 2.
    H.F. Fischmeister, E. Artz, and L.R. Olsson: Powder Metall., 1978, vol. 21, pp. 179–87.Google Scholar
  3. 3.
    G.D. Scott: Nature, 1960, vol. 188, pp. 908–09.CrossRefGoogle Scholar
  4. 4.
    P.J. James: Powder Metall., 1977, vol. 20, pp. 199–204.Google Scholar
  5. 5.
    I.H. Moon and J.S. Choi: Powder Metall., 1985, vol. 28, pp. 21–26.Google Scholar
  6. 6.
    M. Strömgren, H. Åström, and K.E. Easterling: Powder Metall., 1973, vol. 16, pp. 155–65.Google Scholar
  7. 7.
    D.P. DeLo: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1997.Google Scholar
  8. 8.
    D.P. DeLo and H.R. Piehler: Acta Metall. Mater., 1999, vol. 47, pp. 2841–52.Google Scholar
  9. 9.
    D.P. DeLo, R.E. Dutton, and S.L. Semiatin: Scripta Mater., 1999, vol. 40, pp. 1103–09.CrossRefGoogle Scholar
  10. 10.
    H.R. Piehler and D.P. DeLo: Progr. Mater. Sci., 1997, vol. 42, pp. 263–76.CrossRefGoogle Scholar
  11. 11.
    J. Liu and T.J. Davies: Powder Metall., 1997, vol. 40, pp. 51–54.Google Scholar
  12. 12.
    E. Klar and W.M. Shafer: Int. J. Powder Metall. Powder Technol., 1969, vol. 5, pp. 5–12.Google Scholar
  13. 13.
    T. Sheppard and H.B. McShane: Powder Metall., 1980, vol. 23, pp. 120–25.Google Scholar
  14. 14.
    E.K.H. Li and P.D. Funkenbusch: Acta Metall. Mater., 1989, vol. 37, pp. 1645–55.CrossRefGoogle Scholar
  15. 15.
    J. Liu and T.J. Davies: Powder Metall., 1997, vol. 40, pp. 48–50.Google Scholar
  16. 16.
    J. Liu and R.M. German: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2607–14.Google Scholar
  17. 17.
    J.V. Kumar: Report No. MDN R&D 10, Mishra Dhatu Nigam Limited, Hyderabad, India, 1987.Google Scholar
  18. 18.
    E. Arzt: Acta Metall., 1982, vol. 30, pp. 1883–90.CrossRefGoogle Scholar
  19. 19.
    D. Bouvard and E. Ouerdraogo: Powder Technol., 1986, vol. 46, pp. 255–62.CrossRefGoogle Scholar
  20. 20.
    M. Dietz, H.P. Buchkremer, R. Hecher, and D. Stöver: Proc. 4th Int. on Isostatic Pressing, Strat-upon-Avon, MPR Publishing Services Ltd, Shrewsbury, United Kingdom, 1990, pp. 34-1–34-2.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • Jianxin Liu
    • 1
  • David P. De Lo
    • 1
  1. 1.the Prometal Division, Extrude Home CorporationIrwin

Personalised recommendations