Metallurgical and Materials Transactions A

, Volume 31, Issue 2, pp 355–360 | Cite as

Driving force for γε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system

  • Young-Kook Lee
  • Chongsool Choi


A regular solution model for the difference of the chemical free energy between γ and ε phases during γε martensitic transformation in the Fe-Mn binary system has been reexamined and partly modified based on many articles concerning the M s and A s temperatures of Fe-Mn alloys. Using the regular solution model, the measured M s temperatures, and a thermodynamic model for the stacking fault energy (SFE) of austenite (γ), the driving force for γε martensitic transformation, and the SFE of γ have been calculated. The driving force for γε martensitic transformation increases linearly from − 68 to − 120 J/mole with increasing Mn content from 16 to 24 wt pct. The SFE of γ decreases to approximately 13 at. pct Mn and then increases with increasing Mn content, which is in better agreement with Schumann’s result rather than Volosevich et al.’s result.


Austenite Material Transaction Martensitic Transformation Stack Fault Energy Regular Solution Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Zener: Trans. TMS-AIME, 1946, vol. 167, pp. 513–34.Google Scholar
  2. 2.
    L. Kaufman and M. Cohen: Trans. TMS-AIME, 1956, vol. 206, pp. 1393–1401.Google Scholar
  3. 3.
    A. Gilbert and W.S. Owen: Acta Metall., 1962, vol. 10, pp. 45–54.CrossRefGoogle Scholar
  4. 4.
    J.S. Pascover and S.V. Radcliff: Trans. TMS-AIME, 1968, vol. 242, pp. 673–83.Google Scholar
  5. 5.
    L. Kaufman: Trans. TMS-AIME, 1959, vol. 215, pp. 218–27.Google Scholar
  6. 6.
    G.L. Stepakoff and L. Kaufman: Acta Metall., 1968, vol. 16, pp. 13–22.CrossRefGoogle Scholar
  7. 7.
    F.W. Jones and W.I. Pumphery: J. Iron Steel Inst., 1949, vol. 163, pp. 121–31.Google Scholar
  8. 8.
    A. Holden, J.D. Bolton, and E.R. Petty: J. Iron Steel Inst., 1971, vol. 209, pp. 721–33.Google Scholar
  9. 9.
    K. Ishida: Scripta Metall., 1977, vol. 11, pp. 237–42.CrossRefGoogle Scholar
  10. 10.
    S. Takaki, H. Nakatsu, and Y. Tokunaga: Mater. Trans. JIM, 1993, vol. 34, pp. 489–96.Google Scholar
  11. 11.
    J.H. Yang and C.M. Wayman: Acta Metall. Mater., 1992, vol. 40, pp. 2025–31.CrossRefGoogle Scholar
  12. 12.
    H. Schumann: J. Kristall Technik, 1974, vol. 10, pp. 1141–50.Google Scholar
  13. 13.
    P. Yu. Volosevich, V.N. Grindnev, and Y.N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126–30.Google Scholar
  14. 14.
    H. Nakatsu and S. Takaki: J. Jpn. Inst. Met., 1996, vol. 60, pp. 141–50.Google Scholar
  15. 15.
    J.-H. Jun, Y.-K. Lee, and C.-S. Choi: J. Kor. Inst. Met. Mater., 1996, vol. 34, pp. 1399–406.Google Scholar
  16. 16.
    L.D. Blackburn, L. Kaufman, and M. Cohen: Acta Metall., 1965, vol. 13, pp. 533–45.CrossRefGoogle Scholar
  17. 17.
    J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359–71.CrossRefGoogle Scholar
  18. 18.
    K. Ishida and T. Nishizawa: J. Jpn. Inst. Met., 1972, vol. 36, pp. 1238–48.Google Scholar
  19. 19.
    M. Murakami and H. Otsuka: Proc. MRS, Materials Research Society, Tokyo, 1988, pp. 447–54.Google Scholar
  20. 20.
    K. Tsuzaki, M. Ikegami, Y. Tomota, and T. Maki: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 666–76.Google Scholar
  21. 21.
    M. Acet, T. Schneider, B. Gehrmann, and E.F. Wassermann: J. Phys., 1995, vol. 5, pp. C8-379–C8-384.Google Scholar
  22. 22.
    S.H. Cotes, A. Baruj, M. Sade, and G.A. Fernandez: J. Phys., 1995, vol. 5, pp. C2-83–C2-88.Google Scholar
  23. 23.
    T. Maki and K. Tsuzaki: Proc. ICOMAT-92, Monterey Institute of Advanced Studies, Monterey, CA, 1992, pp. 1151–60.Google Scholar
  24. 24.
    Y. Tomota, M. Strum, and J.W. Morris, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 537–47.Google Scholar
  25. 25.
    N.F. Mott and F.R.N. Nabarro: Dislocation Theory and Transient Creep, Bristol Conf., Physics Society, London, 1948, p. 1.Google Scholar
  26. 26.
    K. Tsuzaki, S. Fukasaku, Y. Tomota, and T. Maki: Mater. Trans. JIM, 1991, vol. 32, pp. 222–30.Google Scholar
  27. 27.
    T.Y. Hsu: Proc. ICOMAT-92, Monterey Institute of Advanced Studies, Monterey, CA, 1992, pp. 323–31.Google Scholar
  28. 28.
    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.Google Scholar
  29. 29.
    P.Y. Volosevich, V.N. Grindney, and Y.N. Petrov: Phys. Met. Metallogr., 1975, vol. 40, pp. 90–94.Google Scholar
  30. 30.
    J.-H. Jun, H.-S. Choi, Y.-K. Lee, and C.-S. Choi: Proc. 9th Symp. on Mater. Mater. Properties, Korean Institute of Metals and Materials, Seoul, 1996, pp. 187–97.Google Scholar
  31. 31.
    H. Schumann: Arch. Eisenhuettenwes., 1969, vol. 40, pp. 1027–37.Google Scholar
  32. 32.
    I.N. Bogachev, V.F. Yegolayev, G.E. Zvigintseva, and L.V. Zhuravel: Phys. Met. Metallogr., 1969, vol. 28 (5), pp. 125–30.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • Young-Kook Lee
    • 1
  • Chongsool Choi
    • 2
  1. 1.the Division of EngineeringColorado School of MinesGolden
  2. 2.the Department of Metallurgical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations