Metallurgical and Materials Transactions A

, Volume 31, Issue 9, pp 2275–2285 | Cite as

Mushy zone morphology during directional solidification of Pb-5.8 wt pct Sb alloy

  • L. Yu
  • G. L. Ding
  • J. Reye
  • S. N. Tewari
  • S. N. Ojha


The Pb-5.8 wt pct Sb alloy was directionally solidified with a positive thermal gradient of 140 K cm−1 at a growth speed ranging from 0.8 to 30 µm s−1, and then it was quenched to retain the mushy zone morphology. The morphology of the mushy zone along its entire length has been characterized by using a serial sectioning and three-dimensional image reconstruction technique. Variation in the cellular/dendritic shape factor, hydraulic radius of the interdendritic region, and fraction solid along the mushy zone length has been studied. A comparison with predictions from theoretical models indicates that convection remarkably reduces the primary dendrite spacing while its influence on the dendrite tip radius is not as significant.


Material Transaction Directional Solidification Mushy Zone Interdendritic Region Hydraulic Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.H. Han and R. Trivedi: Acta Metall. Mater., 1994, vol. 42, pp. 25–41.CrossRefGoogle Scholar
  2. 2.
    K. Somboonsuk, J.T. Mason, and R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 967–75.Google Scholar
  3. 3.
    G.L. Ding, W.D. Huang, X. Huang, X. Lin, and Y.H. Zhou: Acta Mater., 1996, vol. 44, pp. 3705–09.CrossRefGoogle Scholar
  4. 4.
    G. Grange, J. Gastaldi, C. Jourdan, and B. Billia: J. Cryst. Growth, 1995, vol. 151, pp. 192–99.CrossRefGoogle Scholar
  5. 5.
    Y. Miyata, T. Suzuki, and J. Uno: Metall. Trans. A, 1985, vol. 16A, pp. 1799–1805.Google Scholar
  6. 6.
    M.H. Burden and J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 109–16.CrossRefGoogle Scholar
  7. 7.
    G. An and L. Liu: J. Cryst. Growth, 1987, vol. 80, pp. 383–92.CrossRefGoogle Scholar
  8. 8.
    J.A. Sarreal and G.J. Abbaschian: Metall. Trans. A, 1986, vol. 17A, pp. 2063–73.Google Scholar
  9. 9.
    J.A. Warren and J.S. Langer: Phys. Rev. E, 1993, vol. 47, pp. 2702–12.CrossRefGoogle Scholar
  10. 10.
    B.J. Spencer and H.E. Huppert: ActaMater., 1998, vol. 46, pp. 2645–62.Google Scholar
  11. 11.
    J.D. Hunt and S.Z. Lu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 611–23.Google Scholar
  12. 12.
    A. Karma and W.J. Rappel: J. Cryst. Growth, 1997, vol. 174, pp. 54–64.CrossRefGoogle Scholar
  13. 13.
    L. Yu, G.L. Ding, J. Reye, S.N. Ojha, and S.N. Tewari: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2463–72.Google Scholar
  14. 14.
    S.N. Tewari and M.A. Chopra: Microgravity Sci. Technol. III, 1990, vol. 2, pp. 99–106.Google Scholar
  15. 15.
    S.N. Tewari and R. Shah: Metall. Mater. Trans A, 1996, vol. 27A, pp. 1353–62.Google Scholar
  16. 16.
    S.N. Ojha, G.L. Ding, L. Yu, J. Reye, and S.N. Tewari: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2167–71.CrossRefGoogle Scholar
  17. 17.
    Leica Ultramiller is a product of Leica Inc., Deerfield, IL.Google Scholar
  18. 18.
    IRIS Explorer is a product of The Numerical Algorithms Group Ltd., Chicago, IL.Google Scholar
  19. 19.
    S.N. Tewari, R. Shah, and M.A. Chopra: Metall. Trans. A, 1993, vol. 24A, pp. 1661–69.Google Scholar
  20. 20.
    R.M. Sharp and A. Hellawell: J. Cryst. Growth, 1970, vol. 6, pp. 253–60; 1971, vol. 11, pp. 77–91.CrossRefGoogle Scholar
  21. 21.
    H. Song and S.N. Tewari: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1111–19.Google Scholar
  22. 22.
    J.C. Heirich, S. Felicelli, P. Nandarpurkar, and D.R. Poirier: Metall. Trans. B, 1989, vol. 20B, pp. 883–91.Google Scholar
  23. 23.
    S.P. O’Dell, G.L. Ding, and S.N. Tewari: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2159–65.CrossRefGoogle Scholar
  24. 24.
    PeakFit is a product of AISN Software Inc., Chicago, IL.Google Scholar
  25. 25.
    J.D. Hunt: Solidification Processing Casting of Metals, The Metals Society, London, 1979, Book 192, pp. 3–11.Google Scholar
  26. 26.
    Metals Handbook, 8th ed., ASM, Metals Park, OH, 1961, vol. 8, p. 329.Google Scholar
  27. 27.
    S.D.E. Cheveigne, C. Guthmann, and P. Kurowski: J. Cryst. Growth, 1988, vol. 92, pp. 616–28.CrossRefGoogle Scholar
  28. 28.
    K. Niwa, M. Shimoji, S. Kado, Y. Watanabe, and T. Yokokawa: Trans. AIME, 1957, vol. 209, pp. 96–101.Google Scholar
  29. 29.
    S.R. Pati and J.E. Morral: Metall. Trans. A, 1986, vol. 17A, pp. 360–62.Google Scholar
  30. 30.
    S.N. Tewari and M.A. Chopra: J. Cryst. Growth, 1992, vol. 118, pp. 183–92.CrossRefGoogle Scholar
  31. 31.
    H. Yu, K.N. Tandon, and J.R. Cahoon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1245–50.Google Scholar
  32. 32.
    M.D. Dupouy, D. Camel, and J.J. Favier: J. Cryst. Growth, 1993, vol. 126, pp. 480–88.CrossRefGoogle Scholar
  33. 33.
    M.D. Dupouy, D. Camel, and J.J. Favier: Acta Metall., 1989, vol. 37, pp. 1143–57.CrossRefGoogle Scholar
  34. 34.
    B.J. Spencer and H.E. Huppert: J. Cryst. Growth, 1999, vol. 200, pp. 287–96.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • L. Yu
    • 1
  • G. L. Ding
    • 1
  • J. Reye
    • 1
  • S. N. Tewari
    • 1
  • S. N. Ojha
    • 2
  1. 1.the Chemical Engineering DepartmentCleveland State UniversityCleveland
  2. 2.Metallurgical Engineering DepartmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations