Metallurgical and Materials Transactions A

, Volume 31, Issue 1, pp 195–211 | Cite as

Microstructural and compositional evolution of compound layers during gaseous nitrocarburizing

  • Hong Du
  • Marcel A. J. Somers
  • John Agren


Compound layers developed at 848 K during gaseous nitrocarburizing of iron and iron-carbon specimens were investigated for several combinations of N and C activities imposed at the specimen surface by gas mixtures of NH3, N2, CO2, and CO. The microstructural evolution of the compound layer was studied by light microscopy and by X-ray diffraction analysis. Composition-depth profiles were determined by electron probe (X-ray) microanalysis. Layer growth kinetics was investigated by layer thickness measurements. The influence of the N and C activities on the microstructural and compositional evolution and the growth kinetics of the compound layers formed is discussed for the iron substrate. The results indicate that the microstructure is governed by a fast C and a slow N absorption at the surface in an early stage of gaseous nitrocarburizing. The influence of carbon in the substrate on the microstructural and compositional evolutions and on the growth kinetics was evaluated from comparing the results obtained for a normalized Fe-0.8C alloy with those for iron under identical nitrocarburizing conditions.


Carbon Activity Material Transaction Cementite Compound Layer Compositional Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Source Book on Nitriding, ASM, Metals Park, OH, 1977.Google Scholar
  2. 2.
    A. Wells: Ph.D. Thesis, The University of Liverpool, Liverpool, 1982.Google Scholar
  3. 3.
    A. Wells and T. Bell: Heat Treatment of Metals, 1983, vol. 2, pp. 39–44.Google Scholar
  4. 4.
    M.A.J. Somers and E.J. Mittemeijer: Surf. Eng., 1987, vol. 3, pp. 123–37.Google Scholar
  5. 5.
    M.A.J. Somers, P.F. Colijn, W.G. Sloof, and E.J. Mittemeijer: Z. Metallkd., 1990, vol. 81, pp. 33–43.Google Scholar
  6. 6.
    J. Slycke and L. Sproge: Surf. Eng., 1989, vol. 5, pp. 125–40.Google Scholar
  7. 7.
    L. Sproge and J. Slycke: Mater. Sci. Forum, 1992, vols. 102–104, pp. 229–42.Google Scholar
  8. 8.
    E.J. Mittemeijer and J. Slycke: Härterei-Tech. Mitt., 1995, vol. 50, pp. 114–25.Google Scholar
  9. 9.
    E.J. Mittemeijer and J. Slycke: Surf. Eng., 1996, vol. 12, pp. 152–62.Google Scholar
  10. 10.
    M.A.J. Somers, B.J. Kooi, L. Maldzinski, E.J. Mittemeijer, A.A. van der Horst, A.M. van der Kraan, and N.M. van der Pers: Acta Mater., 1997, vol. 45, pp. 2013–25.CrossRefGoogle Scholar
  11. 11.
    E.J. Mittemeijer and M.A.J. Somers: Surf. Eng., 1997, vol. 13, pp. 483–97.Google Scholar
  12. 12.
    M.A.J. Somers and E.J. Mittemeijer: Heat Treating, Proc. 17th Conf., D.L. Milam, D.A. Poteet, G.D. Pfaffmann, V. Rudner, A. Muehlbauer, and W.B. Albert, eds., ASM INTERNATIONAL, Metals Park, OH, 1998, pp. 321–30.Google Scholar
  13. 13.
    H.J. Grabke: Arch. Eisenhüttenwes., 1975, vol. 46, pp. 75–81.Google Scholar
  14. 14.
    F.K. Naumann and G.L. Langenscheid: Arch. Eisenhuttenwes., 1965, vol. 36, pp. 583–90.Google Scholar
  15. 15.
    E. Lehrer: Z. Elektrochem., 1930, vol. 36, pp. 383–92.Google Scholar
  16. 16.
    Hong Du: J. Phase Equilibria, 1993, vol. 14, pp. 682–93.Google Scholar
  17. 17.
    J. Kunze: Harterei-Tech. Mitt., 1996, vol. 51, pp. 348–55.Google Scholar
  18. 18.
    A. Wells: J. Mater. Sci., 1985, vol. 20, pp. 2439–45.CrossRefGoogle Scholar
  19. 19.
    D. Schalkoord: Master’s Thesis, Delft University of Technology, Delft, 1973.Google Scholar
  20. 20.
    M.A.J. Somers, N.M. van der Pers, D. Schalkoord, and E.J. Mittemeijer: Metall. Trans. A, 1989, vol. 20A, pp. 1533–39.Google Scholar
  21. 21.
    G.F. Bastin and H.J.M. Heijligers: Scanning, 1990, vol. 12, pp. 225–36.Google Scholar
  22. 22.
    M.A.J. Somers and E.J. Mittemeijer: Mater. Sci. Forum, 1992, vols. 102–104, pp. 223–28.CrossRefGoogle Scholar
  23. 23.
    M.A.J. Somers and E.J. Mittemeijer: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 57–74.Google Scholar
  24. 24.
    Hong Du, N. Lange, and J. Agren: Surf. Eng., 1995, vol. 11, pp. 301–7.Google Scholar
  25. 25.
    Hong Du and J. Agren: Z Metallkd., 1995, vol. 86, pp. 522–29.Google Scholar
  26. 26.
    B.J. Kooi, M.A.J. Somers, and E.J. Mittemeijer: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1055–61 and 1063–71.Google Scholar
  27. 27.
    L. Torchane, P. Bilger, J. Dulcy, and M. Gantois: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1823–35.Google Scholar
  28. 28.
    Hong Du and J. Agren: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1073–80.Google Scholar
  29. 29.
    A. Engstrom: Ph.D. Thesis, Royal Institute of Technology, Stockholm, 1996.Google Scholar
  30. 30.
    L. Sproge, J. Slycke, and J. Agren: Scand. J. Metall., 1988, vol. 17, pp. 122–26.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • Hong Du
    • 1
  • Marcel A. J. Somers
    • 2
  • John Agren
    • 3
  1. 1.United Technologies Research CenterEast Hartford
  2. 2.Department of Manufacturing EngineeringThe Technical University of DenmarkLyngbyDenmark
  3. 3.the Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations