Metallurgical and Materials Transactions A

, Volume 31, Issue 3, pp 691–701 | Cite as

Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties

  • Zenji Horita
  • Takayoshi Fujinami
  • Minoru Nemoto
  • Terence G. Langdon
Article

Abstract

Using equal-channel angular (ECA) pressing at room temperature, the grain sizes of six different commercial aluminum-based alloys (1100, 2024, 3004, 5083, 6061, and 7075) were reduced to within the submicrometer range. These grains were reasonably stable up to annealing temperatures of ∼200 °C and the submicrometer grains were retained in the 2024 and 7075 alloys to annealing temperatures of 300 °C. Tensile testing after ECA pressing through a single pass, equivalent to the introduction of a strain of ∼1, showed there is a significant increase in the values of the 0.2 pct proof stress and the ultimate tensile stress (UTS) for each alloy with a corresponding reduction in the elongations to failure. It is demonstrated that the magnitudes of these stresses scale with the square root of the Mg content in each alloy. Similar values for the proof stresses and the UTS were attained at the same equivalent strains in samples subjected to cold rolling, but the elongations to failure were higher after ECA pressing to equivalent strains >1 because of the introduction of a very small grain size. Detailed results for the 1100 and 3004 alloys show good agreement with the standard Hall-Petch relationship.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov: Russ. Metall. (Metally), 1981, vol. 1, pp. 99–105.Google Scholar
  2. 2.
    V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.Google Scholar
  3. 3.
    R.Z. Valiev and N.K. Tsenev: in Hot Deformation of Aluminum Alloys, T.G. Langdon, H.D. Merchant, J.G. Morris, and M.A. Zaidi, eds., TMS, Warrendale, PA, 1991, pp. 319–29.Google Scholar
  4. 4.
    R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng., 1991, vol. A137, pp. 35–40.Google Scholar
  5. 5.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.CrossRefGoogle Scholar
  6. 6.
    Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2245–52.Google Scholar
  7. 7.
    K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589–99.CrossRefGoogle Scholar
  8. 8.
    E.O. Hall: Proc. Ry. Soc. B, 1951, vol. 64, pp. 747–53.CrossRefGoogle Scholar
  9. 9.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  10. 10.
    R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon: Scripta Mater., 1997, vol. 37, pp. 1945–50.CrossRefGoogle Scholar
  11. 11.
    P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Phil. Mag. Lett., 1998, vol. 78, pp. 313–18.CrossRefGoogle Scholar
  12. 12.
    S. Komura, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1998, vol. 38, pp. 1851–56.CrossRefGoogle Scholar
  13. 13.
    T.G. Langdon, M. Furukawa, Z. Horita, and M. Nemoto: JOM, 1998, vol. 50(6), pp. 41–45.Google Scholar
  14. 14.
    R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Mater. Sci. Eng., 1993, vol. A168, pp. 141–48.Google Scholar
  15. 15.
    S. Ferrasse, V.M. Segal, K.T. Hartwig, and R.E. Goforth: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1047–57.Google Scholar
  16. 16.
    S. Ferrasse, V.M. Segal, K.T. Hartwig, and R.E. Goforth: J. Mater. Res., 1997, vol. 12, pp. 1253–61.Google Scholar
  17. 17.
    M.V. Markushev, C.C. Bampton, M.Y. Murashkin, and D.A. Hardwick: Mater. Sci. Eng., 1997, vol. A234, pp. 927–33.Google Scholar
  18. 18.
    M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi: Scripta Mater., 1997, vol. 36, pp. 699–705.CrossRefGoogle Scholar
  19. 19.
    M. Mabuchi, H. Iwasaki, and K. Higashi: Nanostruct. Mater., 1997, vol. 8, pp. 1105–11.CrossRefGoogle Scholar
  20. 20.
    M. Kawazoe, T. Shibata, and K. Higashi: Mater. Sci. Forum, 1997, vols. 233–234, pp. 207–14.CrossRefGoogle Scholar
  21. 21.
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4751–57.CrossRefGoogle Scholar
  22. 22.
    M. Furukawa, P.B. Berbon, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 169–77.Google Scholar
  23. 23.
    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Phil. Mag., 1998, vol. 78, pp. 203–15.Google Scholar
  24. 24.
    T. Mukai, M. Kawazoe, and K. Higashi: Nanostruct. Mater., 1998, vol. 10, pp. 755–65.CrossRefGoogle Scholar
  25. 25.
    H.G. Salem, R.E. Goforth, and K.T. Hartwig: in Superplasticity and Superplastic Forming 1998, A.K. Ghosh and T.R. Bieler, eds., TMS, Warrendale, PA, 1998, pp. 165–78.Google Scholar
  26. 26.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503–10.Google Scholar
  27. 27.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.CrossRefGoogle Scholar
  28. 28.
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32.Google Scholar
  29. 29.
    K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2011–13.Google Scholar
  30. 30.
    R. Hill: The Mathematical Theory of Plasticity, The Clarendon Press, Oxford, United Kingdom, 1950, ch. 2.Google Scholar
  31. 31.
    J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 2973–82.CrossRefGoogle Scholar
  32. 32.
    Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1996, vol. 11, pp. 1880–90.Google Scholar
  33. 33.
    Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1998, vol. 13, pp. 446–50.Google Scholar
  34. 34.
    R.L. Fleischer: J. Appl. Phys., 1962, vol. 33, pp. 3504–08.CrossRefGoogle Scholar
  35. 35.
    H.W.L. Phillips: J. Inst. Met., 1946, vol. 72, pp. 151–227.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • Zenji Horita
    • 1
  • Takayoshi Fujinami
    • 1
  • Minoru Nemoto
    • 1
  • Terence G. Langdon
    • 2
  1. 1.the Department of Materials Science and Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan
  2. 2.the Departments of Materials Science and Mechanical EngineeringUniversity of Southern CaliforniaLos Angeles

Personalised recommendations