Advertisement

La Lettre de médecine physique et de réadaptation

, Volume 23, Issue 3, pp 139–147 | Cite as

De l’utilisation des robots pour la rééducation: intérêt et perspectives

  • J. Robertson
  • N. Jarrassé
  • V. Pasqui
  • A. Roby-BramiEmail author
Dossier Thématique

Résumé

Le but de ce texte est de présenter et discuter l’apport de la robotique pour la rééducation du membre supérieur, en particulier chez les patients hémiparétiques à la suite d’un accident vasculaire cérébral. La première partie présente les principes généraux qui guident le développement de ces robots, en particulier pour l’interaction mécanique entre le robot et le contrôle moteur humain. La seconde partie présente les principaux robots effectivement utilisés en rééducation avec leurs évaluations cliniques. Les robots permettent de faciliter l’initiation des gestes, la répétition de gestes de qualité, et un meilleur contrôle de la récupération des synergies. Ils autorisent aussi une quantification des gestes et une évaluation objective. Il est donc probable que leur place sera de plus en plus grande lorsque l’on désire un entraînement intensif, bien que leur apport ne soit pas encore cliniquement prouvé. L’aspect qualitatif devrait certainement progresser à l’avenir avec les progrès de la recherche dans le domaine de la robotique et une meilleure compréhension des mécanismes de l’interaction sensorimotrice avec les robots et de l’apprentissage pendant la rééducation. La prise en charge précoce des patients que semblent pouvoir permettre les robots est aussi un point intéressant, même si très peu d’éléments cliniques sur cette question sont actuellement disponibles.

Mots clés

Robotique Rééducation du membre supérieur Apprentissage moteur 

Use of robots in rehabilitation: benefits and future prospects

Abstract

The aim of this paper is to discuss the use of robotic therapy for hemiparetic upper extremities following stroke. The first part addresses the general principles guiding the development of these robots, particularly the mechanical interaction between the robot and human motor control. The second part presents the main robots currently used in rehabilitation, including the clinical studies evaluating them. Robots facilitate movement initiation, allow repetition of quality movements, enable quantification and objective evaluation of movements and allow better control and recovery of synergies. It is therefore likely that they will play a particularly significant role in intensive training, although their value has not yet been clinically proven. In the future, the qualitative aspects of the technology will certainly progress along with advances in the field of robotics and our understanding of the sensory-motor mechanisms governing interaction with robots and motor learning. The opportunity to begin therapy early by using robots is promising, even though little clinical data on this subject currently exists.

Keywords

Robotic therapy Hemiparetic upper limb rehabilitation Motor learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Réféerences

  1. 1.
    Roby-Brami A, Laffont I (2002) Gestes et technologie: la compensation des incapacités motrices. In: B. Bril et V. Roux (eds). Le geste technique, réflexions méthodologiques et anthropologiques. Technologies, idéologies, pratiques, revue d’Anthropologie des connaissances. Erès, Ramonville pp. 95–112Google Scholar
  2. 2.
    Hesse S (2006) Gait training after stroke: a critical reprisal. Ann Readapt Med Phys 49: 621–624PubMedGoogle Scholar
  3. 3.
    Mayr A, Kofler M, Quirbach, E, et al. (2007) Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat Gait Orthosis. Neurorehabil Neural RepairGoogle Scholar
  4. 4.
    Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38: 840–845PubMedCrossRefGoogle Scholar
  5. 5.
    Nudo RJ, Wise BM, SiFuentes F, et al. (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272: 1791–1794PubMedCrossRefGoogle Scholar
  6. 6.
    Bach-Y-Rita P (2001) Theoretical and practical considerations in the restoration of function after stroke. Top Stroke Rehabil 8: 1–15PubMedGoogle Scholar
  7. 7.
    Taub E, Gitendra, U, Elbert, T (2002) New treatments in neurorehabilitation founded on basic research. Nature Neurosci reviews 3: 228–236CrossRefGoogle Scholar
  8. 8.
    Kwakkel G, Wagenaar RC, Twisk JW, et al. (1999) Intensity of leg and arm training after primary middle-cerebralartery stroke: a randomised trial. Lancet 354: 191–196PubMedCrossRefGoogle Scholar
  9. 9.
    Rohrer B, Fasoli S, Krebs HI, et al. (2002) Movement smoothness changes during stroke recovery. J Neurosci 22: 8297–8304PubMedGoogle Scholar
  10. 10.
    Patton JL, Stoykov ME, Kovic M, et al. (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168: 368–383PubMedCrossRefGoogle Scholar
  11. 11.
    Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput 43: 2–10PubMedCrossRefGoogle Scholar
  12. 12.
    Krebs HI, Hogan N, Aisen ML, et al. (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6: 75–87PubMedCrossRefGoogle Scholar
  13. 13.
    Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52: 315–331PubMedCrossRefGoogle Scholar
  14. 14.
    Fasoli SE, Krebs HI, Stein J, et al. (2003) Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84: 477–482PubMedCrossRefGoogle Scholar
  15. 15.
    Ferraro M, Palazzolo JJ, Krol J, et al. (2003) Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 61: 1604–1607PubMedGoogle Scholar
  16. 16.
    Volpe BT, Krebs HI, Hogan N, et al. (2000) A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54: 1938–1944PubMedGoogle Scholar
  17. 17.
    Krebs HI, Ferraro M, Buerger SP, et al. (2004) Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil 1: 5PubMedCrossRefGoogle Scholar
  18. 18.
    Reinkensmeyer DJ, Kahn LE, Averbuch M, et al. (2000) Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev 37: 653–662PubMedGoogle Scholar
  19. 19.
    Kahn LE, Zygman ML, Rymer WZ, et al. (2006) Robotassisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 3: 12PubMedCrossRefGoogle Scholar
  20. 20.
    Lum PS, Burgar CG, Shor PC, et al. (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83: 952–959PubMedCrossRefGoogle Scholar
  21. 21.
    Lum PS, Burgar CG, Shor PC (2004) Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 12: 186–194PubMedCrossRefGoogle Scholar
  22. 22.
    Lum PS, Burgar CG, Van der Loos M, et al. (2006) MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev 43: 631–642PubMedCrossRefGoogle Scholar
  23. 23.
    Hesse S, Werner C, Pohl M, et al. (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36: 1960–1966PubMedCrossRefGoogle Scholar
  24. 24.
    Hesse S, Schulte-Tigges G, Konrad M, et al. (2003) Robotassisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84: 915–920PubMedCrossRefGoogle Scholar
  25. 25.
    Masiero S, Celia A, Rosati G, et al. (2007) Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88: 142–149PubMedCrossRefGoogle Scholar
  26. 26.
    Amirabdollahian F, Loureiro R, Gradwell E, et al. (2007) Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of Gentle/s robot-mediated stroke therapy. J Neuroeng Rehabil 4: 4PubMedCrossRefGoogle Scholar
  27. 27.
    Mihelj MN, T. Riener R (2006) ARMin Toward a six Dof upper limb rehabilitation robot. Biomedical robotics and biomechatronics, BioRob 2006. The first IEEE/RAS-EMBS International Conference: 1154–1159Google Scholar
  28. 28.
    Lum PS, Taub E, Schwandt D, et al. (2004) Automated Constraint-Induced Therapy Extension (Autocite) for movement deficits after stroke. J Rehabil Res Dev 41: 249–258PubMedCrossRefGoogle Scholar
  29. 29.
    Taub E, Lum PS, Hardin P, et al. (2005) Autocite: automated delivery of CI therapy with reduced effort by therapists. Stroke 36: 1301–1304PubMedCrossRefGoogle Scholar
  30. 30.
    Stein J, Krebs HI, Frontera WR, et al. (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83: 720–728PubMedCrossRefGoogle Scholar
  31. 31.
    Moreland JD, Goldsmith CH, Huijbregts MP, et al. (2003) Progressive resistance strengthening exercises after stroke: a single blind randomized controlled trial. Arch Phys Med Rehabil 84: 1433–1440PubMedCrossRefGoogle Scholar
  32. 32.
    Robertson J, Regnaux JP (2005) L’efficacité des techniques de rééducation chez le sujet hémiplégique est-elle influence cée par des facteurs? Kinésithérapie scientifique 458: 5–12Google Scholar
  33. 33.
    Kahn LE, Lum PS, Rymer WZ, et al. (2006) Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev 43: 619–630PubMedCrossRefGoogle Scholar
  34. 34.
    Shadmehr R, Moussavi ZM (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20: 7807–7815PubMedGoogle Scholar
  35. 35.
    Popovic D, Popovic M, Sinkjaer T (2005) Life-like Control for Neural Prostheses: “Proximal Controls Distal”. Conf Proc IEEE Eng Med Biol Soc 7: 7648–7651.PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2007

Authors and Affiliations

  • J. Robertson
    • 1
    • 2
    • 4
  • N. Jarrassé
    • 3
  • V. Pasqui
    • 3
  • A. Roby-Brami
    • 1
    • 2
    • 4
    Email author
  1. 1.Laboratoire neurophysique et physiologieuniversité Paris-Descartes, CNRS-UMR 8119ParisFrance
  2. 2.Service de Rééducation neurologiquehôpital Raymond-PoincaréGarchesFrance
  3. 3.Institut systèmes intelligents et robotiqueuniversité Pierre-et-Marie-Curie, CNRS-FRE 2507Fontenay-aux-rosesFrance
  4. 4.Institut fédératif de recherche sur le handicap (IFR25)ParisFrance

Personalised recommendations