Advertisement

Archives of Osteoporosis

, 14:53 | Cite as

Predictors of imminent non-vertebral fracture in elderly women with osteoporosis, low bone mass, or a history of fracture, based on data from the population-based Canadian Multicentre Osteoporosis Study (CaMos)

  • Jonathan D. Adachi
  • Claudie Berger
  • Rich Barron
  • Derek WeyckerEmail author
  • Tassos P. Anastassiades
  • K. Shawn Davison
  • David A. Hanley
  • George Ioannidis
  • Stuart A. Jackson
  • Robert G. Josse
  • Stephanie M. Kaiser
  • Christopher S. Kovacs
  • William D. Leslie
  • Suzanne N. Morin
  • Alexandra Papaioannou
  • Jerilynn C. Prior
  • Erinda Shyta
  • Amanda Silvia
  • Tanveer Towheed
  • David Goltzman
Original Article
  • 25 Downloads

Abstract

Summary

Using data from the Canadian Multicentre Osteoporosis Study, several risk factors predictive of imminent (2-year) risk of low-trauma non-vertebral fracture among high-risk women were identified, including history of falls, history of low-trauma fracture, poorer physical function, and lower T score. Careful consideration should be given to targeting this population for therapy.

Purpose

Fracture risk assessment has focused on a long-term horizon and populations with a broad risk range. For elderly women with osteoporosis or low bone mass, or a history of fragility fractures (“high-risk women”), risk prediction over a shorter horizon may have greater clinical relevance.

Methods

A repeated-observations design and data from the Canadian Multicentre Osteoporosis Study were employed. Study population comprised women aged ≥ 65 years with T score (total hip, femoral neck, spine) ≤ − 1.0 or prior fracture. Hazard ratios (HR) for predictors of low-trauma non-vertebral fracture during 2-year follow-up were estimated using multivariable shared frailty model.

Results

The study population included 3228 women who contributed 5004 observations; 4.8% experienced low-trauma non-vertebral fracture during the 2-year follow-up. In bivariate analyses, important risk factors included age, back pain, history of falls, history of low-trauma fracture, physical function, health status, and total hip T score. In multivariable analyses, only four independent predictors were identified: falls in past 12 months (≥ 2 falls: HR = 1.9; 1 fall: HR = 1.5), low-trauma fracture in past 12 months (≥ 1 fracture: HR = 1.7), SF-36 physical component summary score (≤ 42.0: HR = 1.6), and total hip T score (≤ − 3.5: HR = 3.7; > − 3.5 to ≤ − 2.5: HR = 2.5; > − 2.5 to ≤ − 1: HR = 1.3).

Conclusions

Imminent risk of low-trauma non-vertebral fracture is elevated among high-risk women with a history of falls or low-trauma fracture, poorer physical function, and lower T score. Careful consideration should be given to identifying and targeting this population for therapy.

Keywords

Osteoporosis Fractures Bone Risk factors 

Notes

Acknowledgments

Funding for this research was provided by Amgen Inc. and UCB Pharma. The Canadian Multicentre Osteoporosis Study was funded by the Canadian Institutes of Health Research (CIHR); Merck Frosst Canada Ltd.; Eli Lilly Canada Inc.; Novartis Pharmaceuticals Inc.; The Alliance: Sanofi-Aventis & Procter and Gamble Pharmaceuticals Canada Inc.; Servier Canada Inc.; Amgen Canada Inc.; The Dairy Farmers of Canada; and The Arthritis Society.

Authors’ contributions

Authorship was designated based on the guidelines promulgated by the International Committee of Medical Journal Editors (2004). All persons who meet criteria for authorship are listed as authors on the title page. The contribution of each of these persons to this study is as follows: (1) conception and design (all authors), acquisition of data (all authors except Barron, Shyta, Silvia, Weycker), and analysis or interpretation of data (all authors) and (2) preparation of manuscript (Barron, Shyta, Silvia, Weycker) and critical review of manuscript (all authors). The study sponsor reviewed the study protocol and study manuscript; data management, processing, and analyses were conducted by PAI, and all final analytic decisions were made by study investigators. All authors have read and approved the final version of the manuscript.

Declaration of funding

Funding for this research was provided by Amgen Inc. to Policy Analysis Inc. (PAI).

Compliance with ethical standards

Conflicts of interest

Rich Barron was employed by Amgen Inc. during the conduct of this study and owns stock in Amgen Inc. Derek Weycker and Amanda Silvia are employed by PAI; Erinda Shyta was employed by PAI during the conduct of this study. Jonathan D. Adachi has grants and personal fees with Amgen Inc. and personal fees with Eli Lilly. K. Shawn Davison has speaker honoraria with Amgen Inc. David A. Hanley has a research grant and speaker honoraria with Amgen Inc. Robert G. Josse has consultancy fees and a speaking honoraria with Amgen Inc. and Merck. Stephanie M. Kaiser has consultancy fees and speaking honoraria with Amgen Inc. Christopher S. Kovacs has an honorarium with Amgen Inc. Suzanne N. Morin has research grants with Amgen Inc. and Merck. Tanveer Towheed has an honorarium and speaker fees with Amgen Inc. Tassos P. Anastassiades, Claudie Berger, David Goltzman, George Ioannidis, Stuart A. Jackson, William D. Leslie, Alexandra Papaioannou, and Jerilynn C. Prior have no conflicts of interest for this work.

Supplementary material

11657_2019_598_MOESM1_ESM.xls (668 kb)
ESM 1 (XLS 668 kb)

References

  1. 1.
    Cooper C (1996) Epidemiology and definition of osteoporosis. In: Compston JE (ed) Osteoporosis. New perspectives on causes, prevention, and treatment. Royal College of Physicians of London, London, pp 1–10Google Scholar
  2. 2.
    Weycker D, Li X, Barron R, Bornheimer R, Chandler D (2016) Hospitalizations for osteoporosis-related fractures: economic costs and clinical outcomes. Bone Rep 5:186–191CrossRefGoogle Scholar
  3. 3.
    Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, Cauley JA, Hillier TA, Browner WS, Cummings SR, Study of Osteoporotic Fractures Research Group (2009) A comparison of prediction models for fractures in older women: is more better? Arch Intern Med 169(22):2087–2094CrossRefGoogle Scholar
  4. 4.
    Kanis JA, Oden A, Johnell O, Johansson H, de Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, la Croix A, McCloskey E, Mellstrom D, Melton LJ, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, van Staa T, Watts NB, Yoshimura N (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046CrossRefGoogle Scholar
  5. 5.
    Langsetmo L, Nguyen TV, Nguyen ND, Kovacs CS, Prior JC, Center JR, Morin S, Josse RG, Adachi JD, Hanley DA, Eisman JA, the Canadian Multicentre Osteoporosis Study Research Group (2011) Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ 183(2):E107–E114CrossRefGoogle Scholar
  6. 6.
    Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344:e3427CrossRefGoogle Scholar
  7. 7.
    Weycker D, Edelsberg J, Barron R, Atwood M, Oster G, Crittenden DB, Grauer A (2017) Predictors of near-term fracture in osteoporotic women aged ≥65 years, based on data from the study of osteoporotic fractures. Osteoporos Int 28(9):2565–2571CrossRefGoogle Scholar
  8. 8.
    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19(10):1431–1444CrossRefGoogle Scholar
  9. 9.
    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18(8):1109–1117CrossRefGoogle Scholar
  10. 10.
    Bonafede M, Shi N, Barron R, Li X, Crittenden DB, Chandler D (2016) Predicting imminent risk of fracture in patients aged 50 or older with osteoporosis using US claims data. Arch Osteoporos 11(1):26CrossRefGoogle Scholar
  11. 11.
    Ioannidis G, Jantzi M, Bucek J, Adachi JD, Giangregorio L, Hirdes J, Pickard L, Papaioannou A (2017) Development and validation of the Fracture Risk Scale (FRS) that predicts fracture over a 1-year time period in institutionalised frail older people living in Canada: an electronic record-linked longitudinal cohort study. BMJ Open 7:e016477.  https://doi.org/10.1136/bmjopen-2017-016477 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Berger C, Langsetmo L, Joseph L, Hanley DA, Davison KS, Josse R, Kreiger N, Tenenhouse A, Goltzman D, and the Canadian Multicentre Osteoporosis Study Research Group (2008) Bone mineral change as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 178(13):1660–1668CrossRefGoogle Scholar
  13. 13.
    Langsetmo LA, Morin S, Richards JB, Davison KS, Olszynski WP, Prior JC, Josse R, Goltzman D, the CaMos Research Group (2009) Effectiveness of antiresorptives for the prevention of nonvertebral low-trauma fractures in a population-based cohort of women. Osteoporos Int 20(2):283–290CrossRefGoogle Scholar
  14. 14.
    Berger C, Langsetmo L, Joseph L, Hanley DA, Davison KS, Josse RG, Prior JC, Kreiger N, Tenenhouse A, Goltzman D, the CaMos Research Group (2009) Association between change in BMD and fragility fracture in women and men. J Bone Miner Res 24(2):361–370CrossRefGoogle Scholar
  15. 15.
    Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181(5):265–271CrossRefGoogle Scholar
  16. 16.
    Langsetmo L, Goltzman D, Kovacs CS, Adachi JD, Hanley DA, Kreiger N, Josse R, Papaioannou A, Olszynski WP, Jamal SA, the CaMos Research Group (2009) Repeat low-trauma fractures occur frequently among men and women who have osteopenic BMD. J Bone Miner Res 24(9):1515–1522CrossRefGoogle Scholar
  17. 17.
    Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S, Kreiger N, Tenenhouse A, Davison KS, Josse RG, Prior JC, Hanley DA, CaMos Research Group (2010) Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res 25(9):1948–1957CrossRefGoogle Scholar
  18. 18.
    Langsetmo L, Morin S, Kovacs CS, Kreiger N, Josse R, Adachi JD, Papaioannou A, Goltzman D, Hanley DA, Olszynski WP, Prior J, Jamal SA (2010) Determining whether women with osteopenic bone mineral density have low, moderate, or high clinical fracture risk. Menopause 17(5):1010–1016CrossRefGoogle Scholar
  19. 19.
    Langsetmo L, Hanley DA, Prior JC, Barr SI, Anastassiades T, Towheed T, Goltzman D, Morin S, Poliquin S, Kreiger N, for the CaMos Research Group (2011) Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥ 50 y: a population-based cohort study. Am J Clin Nutr 93(1):192–199CrossRefGoogle Scholar
  20. 20.
    Fraser LA, Ioannidis G, Adachi JD, Pickard L, Kaiser SM, Prior J, Brown JP, Hanley DA, Olszynski WP, Anastassiades T, Jamal S, Josse R, Goltzman D, Papaioannou A, CaMos Research Group (2011) Fragility fractures and the osteoporosis care gap in women: the Canadian Multicentre Osteoporosis Study. Osteoporos Int 22(3):789–796Google Scholar
  21. 21.
    Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, Papaioannou A, Josse R, Kovacs CS, Olszynski WP, Towheed T, Hanley DA, Kaiser SM, Prior J, Jamal S, Kreiger N, Brown JP, Johansson H, Oden A, McCloskey E, Kanis JA, Leslie WD, CaMos Research Group (2011) Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int 22(3):817–827Google Scholar
  22. 22.
    Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, Papaioannou A, Josse R, Kovacs CS, Olszynski WP, Towheed T, Hanley DA, Kaiser SM, Prior J, Jamal S, Kreiger N, Brown JP, Johansson H, Oden A, McCloskey E, Kanis JA, Leslie WD, CaMos Research Group (2011) Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int 22(3):829–837Google Scholar
  23. 23.
    Langsetmo L, Berger C, Kreiger N, Kovacs CS, Hanley DA, Jamal SA, Whiting SJ, Genest J, Morin SN, Hodsman A, Prior JC, Lentle B, Patel MS, Brown JP, Anastasiades T, Towheed T, Josse RG, Papaioannou A, Adachi JD, Leslie WD, Davison KS, Goltzman D, and the CaMos Group (2013) Calcium and vitamin D intake and mortality: results from the Canadian Multicentre Osteoporosis Study (CaMos). J Clin Endocrinol Metab 98(7):3010–3018CrossRefGoogle Scholar
  24. 24.
    McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJM, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren Ö, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2015) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948CrossRefGoogle Scholar
  25. 25.
    Prior JC, Langsetmo L, Lentle BC, Berger C, Goltzman D, Kovacs CS, Kaiser SM, Adachi JD, Papaioannou A, Anastassiades T, Towheed T, Josse RG, Brown JP, Leslie WD, Kreiger N, CaMoS Research Group.(2015) Ten-year incident osteoporosis-related fractures in the population-based Canadian Multicentre Osteoporosis Study - comparing site and age-specific risks in women and men. Bone 71C:237–243Google Scholar
  26. 26.
    RAND Health (2018) RAND Medical Outcomes Study, 36-Item Short Form Survey (SF-36). Available at: https://www.rand.org/health/surveys_tools/mos/36-item-short-form.html. Accessed on: 26 April 2018
  27. 27.
    Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172CrossRefGoogle Scholar
  28. 28.
    Allison PD (1995) Survival analysis using the SAS system: a practical guide. SAS Institute Inc., Cary, p 292Google Scholar
  29. 29.
    Hannan MT, Weycker D, McLean RR, Sahni S, Travison TG, Bornheimer R, Dufour AB, Barron R, Kiel DP (2016) Predictors of imminent risk of non-vertebral fracture in older women: The Framingham Osteoporosis Study. Presented at the ASBMR 2016 Annual Meeting, Atlanta, GA, September 16–19, 2016. Poster #MO0232. Available at: http://www.asbmr.org/education/AbstractDetail?aid=d660a55e-0dba-4847-83cc-03849411de19
  30. 30.
    Cook NR, Buring JE, Ridker PM (2006) The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med 145(1):21–29CrossRefGoogle Scholar
  31. 31.
    Cook NR (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115(7):928–935CrossRefGoogle Scholar
  32. 32.
    Cook NR (2008) Comments on evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):191–195CrossRefGoogle Scholar
  33. 33.
    Cook NR (2008) Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem 54(1):17–23CrossRefGoogle Scholar
  34. 34.
    Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women. JAMA 297(6):611–619CrossRefGoogle Scholar
  35. 35.
    Nguyen TV, Center JR, Sambrook PN, Eisman JA (2001) Risk factors for proximal humerus, forearm, and wrist fractures in elderly men and women: the Dubbo Osteoporosis Epidemiology Study. Am J Epidemiol 153(6):587–595CrossRefGoogle Scholar
  36. 36.
    Oyen J, Brudvik C, Gjesdal CG, Tell GS, Lie SA, Hove LM. (2011) Osteoporosis as a risk factor for distal radial fractures: a case-control study. J Bone Joint Surg Am 93(4):348–356Google Scholar
  37. 37.
    Silman AJ (2003) Risk factors for Colles’ fracture in men and women: results from the European Prospective Osteoporosis Study. Osteoporos Int 14(3):213–218CrossRefGoogle Scholar
  38. 38.
    Hasselman CT, Vogt MT, Stone KL, Cauley JA, Conti SF (2003) Foot and ankle fractures in elderly white women. Incidence and risk factors. J Bone Joint Surg Am 85-A(5):820–824CrossRefGoogle Scholar
  39. 39.
    Pencina MJ, D'Agostino RB Sr, Larson MG, Massaro JM, Vasan RS (2009) Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation 119(24):3078–3084Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • Jonathan D. Adachi
    • 1
  • Claudie Berger
    • 2
  • Rich Barron
    • 3
  • Derek Weycker
    • 4
    Email author
  • Tassos P. Anastassiades
    • 5
  • K. Shawn Davison
    • 6
  • David A. Hanley
    • 7
  • George Ioannidis
    • 1
  • Stuart A. Jackson
    • 8
  • Robert G. Josse
    • 9
  • Stephanie M. Kaiser
    • 10
  • Christopher S. Kovacs
    • 11
  • William D. Leslie
    • 12
  • Suzanne N. Morin
    • 13
  • Alexandra Papaioannou
    • 1
  • Jerilynn C. Prior
    • 14
  • Erinda Shyta
    • 4
  • Amanda Silvia
    • 4
  • Tanveer Towheed
    • 5
  • David Goltzman
    • 13
  1. 1.McMaster UniversityHamiltonCanada
  2. 2.Research Institute of the McGill University Health CentreMontrealCanada
  3. 3.Amgen Inc.Thousand OaksUSA
  4. 4.Policy Analysis Inc. (PAI)BrooklineUSA
  5. 5.Queen’s UniversityKingstonCanada
  6. 6.University of VictoriaVictoriaCanada
  7. 7.Cumming School of MedicineUniversity of CalgaryCalgaryCanada
  8. 8.University of AlbertaEdmontonCanada
  9. 9.University of TorontoTorontoCanada
  10. 10.Dalhousie UniversityHalifaxCanada
  11. 11.Memorial University of NewfoundlandSt. John’sCanada
  12. 12.University of ManitobaWinnipegCanada
  13. 13.McGill UniversityMontrealCanada
  14. 14.University of British ColumbiaVancouverCanada

Personalised recommendations