Archives of Osteoporosis

, 14:35 | Cite as

Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: a systematic review and meta-analysis

  • Charat Thongprayoon
  • Prakrati Acharya
  • Narothama Reddy Aeddula
  • Aldo Torres-Ortiz
  • Tarun Bathini
  • Konika Sharma
  • Patompong Ungprasert
  • Kanramon Watthanasuntorn
  • Maria Lourdes Gonzalez Suarez
  • Sohail Abdul Salim
  • Wisit Kaewput
  • Jirat Chenbhanich
  • Michael A. Mao
  • Wisit CheungpasitpornEmail author
Review Article



The use of immunosuppressive agents, especially glucocorticoids, are associated with increased risks of bone loss in kidney transplant patients. Denosumab, a potent antiresorptive agent, has been shown to increase bone mineral density (BMD) in patients with CKD. However, its effects on bone metabolism and BMD in kidney transplant patients remain unclear.


A literature search was conducted using MEDLINE, EMBASE, and Cochrane Database from inception through April 2018 to identify studies evaluating denosumab’s effect on changes in bone metabolism and BMD from baseline to post-treatment course in kidney transplant patients. Study results were pooled and analyzed utilizing random-effects model. The protocol for this systematic review is registered with PROSPERO (International Prospective Register of Systematic Reviews; no. CRD42018095055).


Five studies (a clinical trial and four cohort studies) with a total of 162 kidney transplant patients were identified. The majority of patients had a baseline eGFR ≥ 30 mL/min/1.73 m2. After treatment (≥ 6 to 12 months), there were significant increases in BMD with standardized mean differences (SMDs) of 3.26 (95% CI 0.88–5.64) and 1.83 (95% CI 0.43 to 3.22) for lumbar spine and femoral neck, respectively. There were also significant increases in T scores with SMDs of 0.92 (95% CI 0.58 to 1.25) and 1.14 (95% CI 0.17 to 2.10) for lumbar spine and femoral neck, respectively. After treatment, there were no significant changes in serum calcium (Ca) or parathyroid hormone (PTH) from baseline to post-treatment course (≥ 6 months) with mean differences (MDs) of 0.52 (95% CI, − 0.13 to 1.16) mmol/L and − 13.24 (95% CI, − 43.85 to 17.37) ng/L, respectively. The clinical trial data demonstrated more asymptomatic hypocalcemia in the denosumab (12 episodes in 39 patients) than in the control (1 episode in 42 patients) group. From the cohort studies, the pooled incidence of hypocalcemia following denosumab treatment was 1.7% (95% CI 0.4 to 6.6%). All reported hypocalcemic episodes were mild and asymptomatic, but the majority of patients required Ca and vitamin D supplements.


Among kidney transplant patients with good allograft function, denosumab effectively increases BMD and T scores in the lumbar spine and femur neck. From baseline to post-treatment, there are no differences in serum Ca and PTH. However, mild hypocalcemia can occur following denosumab treatment, requiring monitoring and titration of Ca and vitamin D supplements.


Hypocalcemia Calcium Bone metabolism Bone mineral density Denosumab Kidney transplantation 


Authors’ contributions

All authors had access to the data and a role in writing the manuscript.

Compliance with ethical standards

Conflict of interest


Supplementary material

11657_2019_587_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)
11657_2019_587_MOESM2_ESM.doc (64 kb)
ESM 2 (DOC 63 kb)


  1. 1.
    Kaballo MA, Canney M, O’Kelly P, Williams Y, O’Seaghdha CM, Conlon PJ (2018) A comparative analysis of survival of patients on dialysis and after kidney transplantation. Clin Kidney J 11(3):389–393PubMedCrossRefGoogle Scholar
  2. 2.
    Beaudoin C, Jean S, Bessette L, Ste-Marie LG, Moore L, Brown JP (2016) Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: a systematic review and meta-analysis. Osteoporos Int 27(9):2835–2844PubMedCrossRefGoogle Scholar
  3. 3.
    Bellorin-Font E, Ambrosoni P, Carlini RG, Carvalho AB, Correa-Rotter R, Cueto-Manzano A et al (2013) Clinical practice guidelines for the prevention, diagnosis, evaluation and treatment of mineral and bone disorders in chronic kidney disease (CKD-MBD) in adults. Nefrologia 33(Suppl 1):1–28PubMedGoogle Scholar
  4. 4.
    Lan GB, Xie XB, Peng LK, Liu L, Song L, Dai HL (2015) Current status of research on osteoporosis after solid organ transplantation: pathogenesis and management. Biomed Res Int 2015:413169PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kulak CA, Cochenski Borba VZ, Kulak J, Ribeiro Custodio M (2012) Osteoporosis after solid organ transplantation. Minerva Endocrinol 37(3):221–231PubMedGoogle Scholar
  6. 6.
    Fujii N, Okuno A, Yonemoto S, Nishimura K, Kishikawa H, Ichikawa Y (2012) Kidney and bone update : the 5-year history and future of CKD-MBD. Mineral and bone disorder in kidney transplant recipients. Clin Calcium 22(7):1050–1058PubMedGoogle Scholar
  7. 7.
    Dounousi E, Leivaditis K, Eleftheriadis T, Liakopoulos V (2015) Osteoporosis after renal transplantation. Int Urol Nephrol 47(3):503–511PubMedCrossRefGoogle Scholar
  8. 8.
    Bouquegneau A, Salam S, Delanaye P, Eastell R, Khwaja A (2016) Bone disease after kidney transplantation. Clin J Am Soc Nephrol 11(7):1282–1296PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Savaj S, Ghods FJ (2012) Vitamin D, parathyroid hormone, and bone mineral density status in kidney transplant recipients. Iran J Kidney Dis 6(4):295–299PubMedGoogle Scholar
  10. 10.
    Messa P, Aroldi A, Villa M, Rusconi E (2004) Bone complications of renal transplantation. How to identify and prevent them. G Ital Nefrol 21(4):331–342PubMedGoogle Scholar
  11. 11.
    Yu TM, Lin CL, Chang SN, Sung FC, Huang ST, Kao CH (2014) Osteoporosis and fractures after solid organ transplantation: a nationwide population-based cohort study. Mayo Clin Proc 89(7):888–895PubMedCrossRefGoogle Scholar
  12. 12.
    Early C, Stuckey L, Tischer S (2016) Osteoporosis in the adult solid organ transplant population: underlying mechanisms and available treatment options. Osteoporos Int 27(4):1425–1440PubMedCrossRefGoogle Scholar
  13. 13.
    Kulak CA, Borba VZ, Kulak J Jr, Custodio MR (2012) Osteoporosis after transplantation. Curr Osteoporos Rep 10(1):48–55PubMedCrossRefGoogle Scholar
  14. 14.
    Ball AM, Gillen DL, Sherrard D, Weiss NS, Emerson SS, Seliger SL, Kestenbaum BR, Stehman-Breen C (2002) Risk of hip fracture among dialysis and renal transplant recipients. Jama. 288(23):3014–3018PubMedCrossRefGoogle Scholar
  15. 15.
    Nikkel LE, Hollenbeak CS, Fox EJ, Uemura T, Ghahramani N (2009) Risk of fractures after renal transplantation in the United States. Transplantation. 87(12):1846–1851PubMedCrossRefGoogle Scholar
  16. 16.
    Abbott KC, Oglesby RJ, Hypolite IO, Kirk AD, Ko CW, Welch PG, Agodoa LY, Duncan WE (2001) Hospitalizations for fractures after renal transplantation in the United States. Ann Epidemiol 11(7):450–457PubMedCrossRefGoogle Scholar
  17. 17.
    Naylor KL, Li AH, Lam NN, Hodsman AB, Jamal SA, Garg AX (2013) Fracture risk in kidney transplant recipients: a systematic review. Transplantation. 95(12):1461–1470PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, FREEDOM Trial (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765PubMedCrossRefGoogle Scholar
  19. 19.
    Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361(8):745–755PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93(2):165–176PubMedCrossRefGoogle Scholar
  21. 21.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature. 423(6937):337–342PubMedCrossRefGoogle Scholar
  22. 22.
    Jamal SA, Ljunggren O, Stehman-Breen C, Cummings SR, McClung MR, Goemaere S et al (2011) Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res 26(8):1829–1835PubMedCrossRefGoogle Scholar
  23. 23.
    Bonani M, Meyer U, Frey D, Graf N, Bischoff-Ferrari HA, Wuthrich RP (2016) Effect of denosumab on peripheral compartmental bone density, microarchitecture and estimated bone strength in De novo kidney transplant recipients. Kidney Blood Press Res 41(5):614–622PubMedCrossRefGoogle Scholar
  24. 24.
    Doddoli S, Lafforgue P, Pham T (2017) FRI0575 safety of denosumab in a monocentric cohort of kidney transplant recipients. Ann Rheum Dis 76:706Google Scholar
  25. 25.
    Yoshino Y, Nakayama S, Hiratsuka I, Shibata M, Ito T, Sasaki H et al editors (2017) Efficacy and safety of denosumab on post-kidney transplantation recipients. JOURNAL OF BONE AND MINERAL RESEARCH; WILEY 111 RIVER ST, HOBOKEN 07030–5774, NJ USAGoogle Scholar
  26. 26.
    Nakayama S, Yoshino Y, Hiratsuka I, Shibata M, Ito T, Sasaki H et al editors (2017) Denosumab increased bone mineral density but did not affect trabecular bone score (TBS) during first year after kidney transplantation. JOURNAL OF BONE AND MINERAL RESEARCH; WILEY 111 RIVER ST, HOBOKEN 07030–5774, NJ USAGoogle Scholar
  27. 27.
    Brunova J, Kratochvilova S, Stepankova J (2018) Osteoporosis therapy with denosumab in organ transplant recipients. Front Endocrinol (Lausanne) 9:162CrossRefGoogle Scholar
  28. 28.
    Bonani M, Frey D, Brockmann J, Fehr T, Mueller TF, Saleh L, von Eckardstein A, Graf N, Wüthrich RP (2016) Effect of twice-yearly denosumab on prevention of bone mineral density loss in de novo kidney transplant recipients: a randomized controlled trial. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 16(6):1882–1891CrossRefGoogle Scholar
  29. 29.
    Dave V, Chiang CY, Booth J, Mount PF (2015) Hypocalcemia post denosumab in patients with chronic kidney disease stage 4-5. Am J Nephrol 41(2):129–137PubMedCrossRefGoogle Scholar
  30. 30.
    Monge Rafael P, Arias M, Fernandez-Fresnedo G (2016) Severe hypocalcemia following denosumab injection in patient with chronic kidney disease. Nefrologia 36(4):446–448PubMedCrossRefGoogle Scholar
  31. 31.
    Oiwa H, Mokuda S (2016) Severe hypocalcemia and prolonged QT interval due to denosumab in an elderly woman with rheumatoid arthritis and chronic kidney disease. Eur J Rheumatol 3(3):144–145PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ungprasert P, Cheungpasitporn W, Srivali N, Kittanamongkolchai W, Bischof EF (2013) Life-threatening hypocalcemia associated with denosumab in a patient with moderate renal insufficiency. Am J Emerg Med 31(4):756 e1–756 e2CrossRefGoogle Scholar
  33. 33.
    Ott SM (2013) Therapy for patients with CKD and low bone mineral density. Nat Rev Nephrol 9(11):681–692PubMedCrossRefGoogle Scholar
  34. 34.
    Diab DL, Watts NB (2014) Denosumab in osteoporosis. Expert Opin Drug Saf 13(2):247–253PubMedCrossRefGoogle Scholar
  35. 35.
    Thongprayoon C, Acharya P, Acharya C, Chenbhanich J, Bathini T, Boonpheng B, Sharma K, Wijarnpreecha K, Ungprasert P, Gonzalez Suarez ML, Cheungpasitporn W (2018) Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: a meta-analysis of observational studies. Osteoporos Int 29(8):1737–1745PubMedCrossRefGoogle Scholar
  36. 36.
    Weiner DE, Carpenter MA, Levey AS, Ivanova A, Cole EH, Hunsicker L, Kasiske BL, Kim SJ, Kusek JW, Bostom AG (2012) Kidney function and risk of cardiovascular disease and mortality in kidney transplant recipients: the FAVORIT trial. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 12(9):2437–2445CrossRefGoogle Scholar
  37. 37.
    Masson I, Flamant M, Maillard N, Rule AD, Vrtovsnik F, Peraldi MN, Thibaudin L, Cavalier E, Vidal-Petiot E, Bonneau C, Moranne O, Alamartine E, Mariat C, Delanaye P (2013) MDRD versus CKD-EPI equation to estimate glomerular filtration rate in kidney transplant recipients. Transplantation. 95(10):1211–1217PubMedCrossRefGoogle Scholar
  38. 38.
    von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 4(10):e296CrossRefGoogle Scholar
  39. 39.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12PubMedCrossRefGoogle Scholar
  42. 42.
    Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73(9):712–716PubMedCrossRefGoogle Scholar
  43. 43.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188PubMedCrossRefGoogle Scholar
  44. 44.
    Follmann D, Elliott P, Suh I, Cutler J (1992) Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 45(7):769–773PubMedCrossRefGoogle Scholar
  45. 45.
    Cohen J. Statistical power analysis for the behaviour science. New York, NY: Lawrence Erlbaum Associated Dorfberger, S, Adi-Japha, E, & Kami, A (2009) Sex dif ferences in motor performance and motor learning in children and adolescents: an increasing male advantage in motor learning and consolidation phase gains Behavioural Brain Research. 1988;198:165–71Google Scholar
  46. 46.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Naylor KL, Garg AX, Hodsman AB, Rush DN, Leslie WD (2014) Long-term changes in bone mineral density in kidney transplant recipients. Transplantation. 98(12):1279–1285PubMedCrossRefGoogle Scholar
  48. 48.
    Lopez Ruiz Mdel C, Ortega Martinez AR, Fernandez Castillo R, Esteban de la Rosa RJ, Bravo Soto JA (2015) Osteoporosis and body mass index in renal transplant recipients. Nutr Hosp 32(2):872–877PubMedGoogle Scholar
  49. 49.
    Gupta AK, Huang M, Prasad GV (2012) Determinants of bone mineral density in stable kidney transplant recipients. J Nephrol 25(3):373–383PubMedCrossRefGoogle Scholar
  50. 50.
    Bonani M, Rodriguez D, Fehr T, Mohebbi N, Brockmann J, Blum M, Graf N, Frey D, Wüthrich RP (2014) Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press Res 39(4):230–239PubMedCrossRefGoogle Scholar
  51. 51.
    Smallwood GA, Burns D, Fasola CG, Steiber AC, Heffron TG (2005) Relationship between immunosuppression and osteoporosis in an outpatient liver transplant clinic. Transplant Proc 37(4):1910–1911PubMedCrossRefGoogle Scholar
  52. 52.
    Maalouf NM, Shane E (2005) Osteoporosis after solid organ transplantation. J Clin Endocrinol Metab 90(4):2456–2465PubMedCrossRefGoogle Scholar
  53. 53.
    Cheungpasitporn W, Kremers WK, Lorenz E, Amer H, Cosio FG, Stegall MD, Gandhi MJ, Schinstock CA (2018) De novo donor-specific antibody following BK nephropathy: the incidence and association with antibody-mediated rejection. Clin Transpl 32(3):e13194CrossRefGoogle Scholar
  54. 54.
    Schinstock CA, Gandhi M, Cheungpasitporn W, Mitema D, Prieto M, Dean P, Cornell L, Cosio F, Stegall M (2017) Kidney transplant with low levels of DSA or low positive B-flow crossmatch: an underappreciated option for highly sensitized transplant candidates. Transplantation. 101(10):2429–2439PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Schinstock CA, Cosio F, Cheungpasitporn W, Dadhania DM, Everly MJ, Samaniego-Picota MD, Cornell L, Stegall MD (2017) The value of protocol biopsies to identify patients with De novo donor-specific antibody at high risk for allograft loss. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 17(6):1574–1584CrossRefGoogle Scholar
  56. 56.
    Bowman AR, Sass DA, Dissanayake IR, Ma YF, Liang H, Yuan Z, Jee WSS, Epstein S (1997) The role of testosterone in cyclosporine-induced osteopenia. J Bone Miner Res 12(4):607–615PubMedCrossRefGoogle Scholar
  57. 57.
    Shin WY, Li SZ, Chung SS, Lee HC, Huh KB, Lim SK (2000) Effects of cyclosporin A on sex hormone and estrogen receptor in male rat with special reference to cyclosporin A-induced osteoporosis. Yonsei Med J 41(1):61–67PubMedCrossRefGoogle Scholar
  58. 58.
    Monegal A, Navasa M, Guanabens N, Peris P, Pons F, Martinez de Osaba MJ et al (2001) Bone mass and mineral metabolism in liver transplant patients treated with FK506 or cyclosporine A. Calcif Tissue Int 68(2):83–86PubMedCrossRefGoogle Scholar
  59. 59.
    Guichelaar MM, Malinchoc M, Sibonga J, Clarke BL, Hay JE (2004) Immunosuppressive and postoperative effects of orthotopic liver transplantation on bone metabolism. Liver Transpl 10(5):638–647PubMedCrossRefGoogle Scholar
  60. 60.
    Jeon HJ, Han M, Jeong JC, Kim YJ, Kwon HY, Koo TY, Ahn C, Yang J (2013) Impact of vitamin D, bisphosphonate, and combination therapy on bone mineral density in kidney transplant patients. Transplant Proc 45(8):2963–2967PubMedCrossRefGoogle Scholar
  61. 61.
    Huang WH, Lee SY, Weng CH, Lai PC (2012) Use of alendronate sodium (Fosamax) to ameliorate osteoporosis in renal transplant patients: a case-control study. PLoS One 7(11):e48481PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Torregrosa JV, Fuster D, Gentil MA, Marcen R, Guirado L, Zarraga S, Bravo J, Burgos D, Monegal A, Muxí A, García S (2010) Open-label trial: effect of weekly risedronate immediately after transplantation in kidney recipients. Transplantation. 89(12):1476–1481PubMedCrossRefGoogle Scholar
  63. 63.
    Mainra R, Elder GJ (2010) Individualized therapy to prevent bone mineral density loss after kidney and kidney-pancreas transplantation. Clin J Am Soc Nephrol 5(1):117–124PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Alshayeb HM, Josephson MA, Sprague SM (2013) CKD-mineral and bone disorder management in kidney transplant recipients. Am J Kidney Dis 61(2):310–325PubMedCrossRefGoogle Scholar
  65. 65.
    Okamoto M, Yamanaka S, Yoshimoto W, Shigematsu T (2014) Alendronate as an effective treatment for bone loss and vascular calcification in kidney transplant recipients. J Transplant 2014:269613PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lan G, Peng L, Xie X, Peng F, Wang Y, Yu S (2008) Alendronate is effective to treat bone loss in renal transplantation recipients. Transplant Proc 40(10):3496–3498PubMedCrossRefGoogle Scholar
  67. 67.
    Bonani M, Frey D, de Rougemont O, Mueller NJ, Mueller TF, Graf N, Wüthrich RP (2017) Infections in de novo kidney transplant recipients treated with the RANKL inhibitor denosumab. Transplantation. 101(9):2139–2145PubMedCrossRefGoogle Scholar
  68. 68.
    Vouri SM, Blaszczyk AT (2013) Bisphosphonate use in patients undergoing dialysis. Consult Pharm 28(11):738–741PubMedCrossRefGoogle Scholar
  69. 69.
    Park W, Lee SH, Park KR, Rho SH, Chung WY, Kim HJ (2012) Characteristics of bisphosphonate-related osteonecrosis of the jaw after kidney transplantation. J Craniofac Surg 23(5):e510–e514PubMedCrossRefGoogle Scholar
  70. 70.
    Paydas S, Balal M, Demir E, Sertdemir Y, Erken U (2011) Avascular osteonecrosis and accompanying anemia, leucocytosis, and decreased bone mineral density in renal transplant recipients. Transplant Proc 43(3):863–866PubMedCrossRefGoogle Scholar
  71. 71.
    Burke MT, Hollett PR, Gray NA (2012) Atypical fractures associated with bisphosphonate use post-renal transplantation. Nephrology (Carlton) 17(Suppl 1):1–4CrossRefGoogle Scholar
  72. 72.
    Kulak CA, Borba VZ, Kulak Junior J, Custodio MR (2014) Bone disease after transplantation: osteoporosis and fractures risk. Arq Bras Endocrinol Metabol 58(5):484–492PubMedCrossRefGoogle Scholar
  73. 73.
    Yamamoto S, Suzuki A, Sasaki H, Sekiguchi-Ueda S, Asano S, Shibata M, Hayakawa N, Hashimoto S, Hoshinaga K, Itoh M (2013) Oral alendronate can suppress bone turnover but not fracture in kidney transplantation recipients with hyperparathyroidism and chronic kidney disease. J Bone Miner Metab 31(1):116–122PubMedCrossRefGoogle Scholar
  74. 74.
    Toth-Manikowski SM, Francis JM, Gautam A, Gordon CE (2016) Outcomes of bisphosphonate therapy in kidney transplant recipients: a systematic review and meta-analysis. Clin Transpl 30(9):1090–1096CrossRefGoogle Scholar
  75. 75.
    Dijkman HB, Weening JJ, Smeets B, Verrijp KC, van Kuppevelt TH, Assmann KK et al (2006) Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int 70(2):338–344PubMedCrossRefGoogle Scholar
  76. 76.
    Rahbari-Oskoui F, Fielder O, Ghasemzadeh N, Hennigar R (2013) Prolonged recovery time from zoledronic acid induced acute tubular necrosis: a case report and review of the literature. Case Rep Nephrol 2013:651246PubMedPubMedCentralGoogle Scholar
  77. 77.
    Yachoui R (2016) Early onset acute tubular necrosis following single infusion of zoledronate. Clin Cases Miner Bone Metabol 13(2):154–156Google Scholar
  78. 78.
    ten Dam MA, Hilbrands LB, Wetzels JF (2011) Nephrotic syndrome induced by pamidronate. Med Oncol 28(4):1196–1200PubMedCrossRefGoogle Scholar
  79. 79.
    Avgustin N, Kovac D, Kojc N, Mlinsek G, Lindic J (2017) Acute granulomatous interstitial nephritis and acute rejection in a kidney transplant recipient after zoledronic acid therapy—a case report and review of the literature. Clin Nephrol 88(13):97–100PubMedCrossRefGoogle Scholar
  80. 80.
    Saag KG, Zanchetta JR, Devogelaer JP, Adler RA, Eastell R, See K, Krege JH, Krohn K, Warner MR (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60(11):3346–3355PubMedCrossRefGoogle Scholar
  81. 81.
    Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis Foundation (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Grossman JM, Gordon R, Ranganath VK, Deal C, Caplan L, Chen W, Curtis JR, Furst DE, McMahon M, Patkar NM, Volkmann E, Saag KG (2010) American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken) 62(11):1515–1526CrossRefGoogle Scholar
  83. 83.
    Nakamura Y, Kamimura M, Ikegami S, Mukaiyama K, Uchiyama S, Taguchi A, Kato H (2015) Changes in serum vitamin D and PTH values using denosumab with or without bisphosphonate pre-treatment in osteoporotic patients: a short-term study. BMC Endocr Disord 15:81PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Makras P, Polyzos SA, Papatheodorou A, Kokkoris P, Chatzifotiadis D, Anastasilakis AD (2013) Parathyroid hormone changes following denosumab treatment in postmenopausal osteoporosis. Clin Endocrinol 79(4):499–503CrossRefGoogle Scholar
  85. 85.
    Chen CL, Chen NC, Hsu CY, Chou KJ, Lee PT, Fang HC, Renn JH (2014) An open-label, prospective pilot clinical study of denosumab for severe hyperparathyroidism in patients with low bone mass undergoing dialysis. J Clin Endocrinol Metab 99(7):2426–2432PubMedCrossRefGoogle Scholar
  86. 86.
    Chen CL, Chen NC, Liang HL, Hsu CY, Chou KJ, Fang HC, Lee PT (2015) Effects of denosumab and calcitriol on severe secondary hyperparathyroidism in dialysis patients with low bone mass. J Clin Endocrinol Metab 100(7):2784–2792PubMedCrossRefGoogle Scholar
  87. 87.
    Torregrosa JV (2013) Dramatic increase in parathyroid hormone and hypocalcaemia after denosumab in a kidney transplanted patient. Clin Kidney J 6(1):122PubMedCrossRefGoogle Scholar
  88. 88.
    Dusilova Sulkova S, Horacek J, Safranek R, Gorun P, Viklicky O, Palicka V (2014) Denosumab associated with bone density increase and clinical improvement in a long-term hemodialysis patient. Case report and review of the literature. Acta Med (Hradec Kralove) 57(1):30–33CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • Charat Thongprayoon
    • 1
  • Prakrati Acharya
    • 2
  • Narothama Reddy Aeddula
    • 3
  • Aldo Torres-Ortiz
    • 2
  • Tarun Bathini
    • 4
  • Konika Sharma
    • 5
  • Patompong Ungprasert
    • 6
  • Kanramon Watthanasuntorn
    • 5
  • Maria Lourdes Gonzalez Suarez
    • 2
  • Sohail Abdul Salim
    • 2
  • Wisit Kaewput
    • 7
  • Jirat Chenbhanich
    • 8
  • Michael A. Mao
    • 1
  • Wisit Cheungpasitporn
    • 2
    Email author
  1. 1.Division of Nephrology and Hypertension, Department of MedicineMayo ClinicRochesterUSA
  2. 2.Division of Nephrology, Department of MedicineUniversity of Mississippi Medical CenterJacksonUSA
  3. 3.Division of Nephrology, Department of MedicineIndiana University School of Medicine and Deaconess Health SystemEvansvilleUSA
  4. 4.Department of Internal MedicineUniversity of ArizonaTucsonUSA
  5. 5.Department of Internal MedicineBassett Medical CenterCooperstownUSA
  6. 6.Clinical Epidemiology Unit, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  7. 7.Department of Military and Community MedicinePhramongkutklao College of MedicineBangkokThailand
  8. 8.Department of Internal MedicineMetrowest Medical CenterFraminghamUSA

Personalised recommendations