Advertisement

Archives of Osteoporosis

, 14:6 | Cite as

Risk factors for loss of bone mineral density after curative esophagectomy

  • Jessie A. Elliott
  • Sean Casey
  • Conor F. Murphy
  • Neil G. Docherty
  • Narayanasamy Ravi
  • Peter Beddy
  • John V. Reynolds
  • Carel W. le RouxEmail author
Original Article

Abstract

Summary

Micronutrient and fat malabsorption and altered enteroendocrine signaling occur after esophagectomy for cancer; however, the impact of malnutrition on bone health in this cohort has not been previously investigated. In this study, the prevalence of osteoporosis increased after curative surgery, associated with disease-specific, treatment-related, and population risk factors.

Purpose

Improved oncologic outcomes in esophageal cancer (EC) have resulted in increased survivorship and a focus on long-term quality of life. Malnutrition and micronutrient malabsorption are common among patients with EC, but the effect on bone metabolism is not known. The aim of this study was to characterize changes in bone mineral density (BMD) following curative esophagectomy.

Methods

Consecutive disease-free patients who underwent esophagectomy with gastric conduit for pathologically node-negative disease from 2000 to 2014 were included. BMD was assessed at vertebral levels T12-L5 by computed tomography using a simple trabecular region-of-interest attenuation technique, and serum markers of nutritional status and bone metabolism were examined. Independent risk factors for osteoporosis were identified by multivariable logistic regression.

Results

Seventy-five consecutive patients were studied. Osteoporosis was present in 25% at diagnosis. BMD declined at 1 and 2 years postoperatively (144.3 ± 45.8 versus 128.6 ± 46.2 and 122.7 ± 43.5 Hounsfield Units (HU), P < 0.0001), with increased osteoporosis prevalence to 38% and 44% (P = 0.049), respectively. No significant postoperative change in vitamin D, calcium, or phosphate was observed, but alkaline phosphatase increased significantly (P < 0.001). While female sex (P = 0.004) and ASA grade (P = 0.043) were independently associated with osteoporosis at diagnosis, age (P = 0.050), female sex (P = 0.023), smoking (P = 0.024), and pathologic T stage (P = 0.023) were independently predictive of osteoporosis at 1 year postoperatively.

Conclusions

Osteoporosis is prevalent among disease-free patients post-esophagectomy for EC, associated with disease-specific, treatment-related, and population risk factors. Strategies which minimize BMD decline should be considered to avoid fragility fractures in this cohort.

Keywords

Bone Bone mineral density Esophagectomy Esophageal cancer Malnutrition Malabsorption 

Notes

Compliance with ethical standards

Conflicts of interest

None.

Supplementary material

11657_2018_556_MOESM1_ESM.pdf (74 kb)
Supplementary Figure 1 Serial L1 CT-predicted bone mineral density among matched control subjects. Among age- and sex-matched control subjects who underwent serial CT approximately one year apart, L1 BMD was unchanged (149.1 ± 41.5 HU vs 146.8 ± 36.2 HU, P = 0.45; R2 = 0.95, P < 0.0001). Dotted line represents the study BMD threshold for osteoporosis (110 HU). Paired t test, linear regression (PDF 73 kb)
11657_2018_556_MOESM2_ESM.pdf (35 kb)
Supplementary Figure 2 Factors associated with L1 CT-predicted bone mineral density at one year post esophagectomy. Univariable analysis of factors associated with bone mineral density as determined by CT of the L1 vertebra at one year post esophagectomy demonstrated that lower L1 BMD was associated with increasing age (top left), lower serum creatinine (middle left), greater serum alkaline phosphatase (middle right), but was unrelated to serum calcium, phosphate or albumin levels. Dotted line represents the study BMD threshold for osteoporosis (110 HU), female subjects are represented by orange symbols and male subjects by blue symbols. Pearson correlation (PDF 34 kb)
11657_2018_556_MOESM3_ESM.docx (19 kb)
Supplementary Table 1 (DOCX 18 kb)

References

  1. 1.
    Reynolds JV, Donohoe CL, McGillycuddy E, Ravi N, O’Toole D, O’Byrne K, Hollywood D (2012) Evolving progress in oncologic and operative outcomes for esophageal and junctional cancer: lessons from the experience of a high-volume center. J Thorac Cardiovasc Surg 143:1130–7 e1CrossRefGoogle Scholar
  2. 2.
    Klevebro F, Alexandersson von Dobeln G, Wang N, et al. A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction. Ann Oncol 2016Google Scholar
  3. 3.
    Shapiro J, van Lanschot JJ, Hulshof MC, van Hagen P, van Berge Henegouwen M, Wijnhoven BPL, van Laarhoven H, Nieuwenhuijzen GAP, Hospers GAP, Bonenkamp JJ, Cuesta MA, Blaisse RJB, Busch ORC, ten Kate F, Creemers GM, Punt CJA, Plukker JTM, Verheul HMW, Bilgen EJS, van Dekken H, van der Sangen M, Rozema T, Biermann K, Beukema JC, Piet AHM, van Rij C, Reinders JG, Tilanus HW, Steyerberg EW, van der Gaast A, CROSS study group (2015) Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol 16:1090–1098CrossRefGoogle Scholar
  4. 4.
    Donohoe CL, McGillycuddy E, Reynolds JV (2011) Long-term health-related quality of life for disease-free esophageal cancer patients. World J Surg 35:1853–1860CrossRefGoogle Scholar
  5. 5.
    Lagergren P, Avery KN, Hughes R et al (2007) Health-related quality of life among patients cured by surgery for esophageal cancer. Cancer 110:686–693CrossRefGoogle Scholar
  6. 6.
    Martin L, Jia C, Rouvelas I, Lagergren P (2008) Risk factors for malnutrition after oesophageal and cardia cancer surgery. Br J Surg 95:1362–1368CrossRefGoogle Scholar
  7. 7.
    Martin L, Lagergren J, Lindblad M, Rouvelas I, Lagergren P (2007) Malnutrition after oesophageal cancer surgery in Sweden. Br J Surg 94:1496–1500CrossRefGoogle Scholar
  8. 8.
    Martin L, Lagergren P (2009) Long-term weight change after oesophageal cancer surgery. Br J Surg 96:1308–1314CrossRefGoogle Scholar
  9. 9.
    Heneghan HM, Zaborowski A, Fanning M, McHugh A, Doyle S, Moore J, Ravi N, Reynolds JV (2015) Prospective study of malabsorption and malnutrition after esophageal and gastric Cancer surgery. Ann Surg 262:803–808CrossRefGoogle Scholar
  10. 10.
    Elliott JA, Docherty NG, Eckhardt HG et al (2016) Weight loss, satiety, and the postprandial gut hormone response after Esophagectomy: a prospective study. Ann SurgGoogle Scholar
  11. 11.
    Elliott JA, Jackson S, King S, McHugh R, Docherty NG, Reynolds JV, le Roux CW (2015) Gut hormone suppression increases food intake after Esophagectomy with gastric conduit reconstruction. Ann Surg 262:824–830CrossRefGoogle Scholar
  12. 12.
    Healy LA, Ryan A, Doyle SL, Ní Bhuachalla ÉB, Cushen S, Segurado R, Murphy T, Ravi N, Donohoe CL, Reynolds JV (2017) Does prolonged enteral feeding with supplemental Omega-3 fatty acids impact on recovery post-Esophagectomy: results of a randomized double-blind trial. Ann Surg 266:720–728CrossRefGoogle Scholar
  13. 13.
    Heneghan HM, Zaborowski A, Fanning M, McHugh A, Doyle S, Moore J, Ravi N, Reynolds JV (2015) Prospective study of malabsorption and malnutrition after esophageal and gastric Cancer surgery. Ann Surg 262:803–807 discussion 7-8CrossRefGoogle Scholar
  14. 14.
    Elliott JA, Doyle SL, Murphy CF, et al. Sarcopenia: Prevalence, and Impact on Operative and Oncologic Outcomes in the Multimodal Management of Locally Advanced Esophageal Cancer. Ann Surg 2017Google Scholar
  15. 15.
    Ahmed Z, Elliott JA, King S, Donohoe CL, Ravi N, Reynolds JV (2017) Risk factors for anastomotic stricture post-esophagectomy with a standardized sutured anastomosis. World J Surg 41:487–497CrossRefGoogle Scholar
  16. 16.
    Huddy JR, Macharg FM, Lawn AM et al (2013) Exocrine pancreatic insufficiency following esophagectomy. Dis Esophagus 26:594–597CrossRefGoogle Scholar
  17. 17.
    Heiskanen JT, Kroger H, Paakkonen M et al (2001) Bone mineral metabolism after total gastrectomy. Bone 28:123–127CrossRefGoogle Scholar
  18. 18.
    Glatzle J, Piert M, Meile T, Besenthal I, Schäfer JF, Königsrainer A, Zittel TT (2005) Prevalence of vertebral alterations and the effects of calcium and vitamin D supplementation on calcium metabolism and bone mineral density after gastrectomy. Br J Surg 92:579–585CrossRefGoogle Scholar
  19. 19.
    Frederiksen KD, Hanson S, Hansen S, et al. Bone Structural Changes and Estimated Strength After Gastric Bypass Surgery Evaluated by HR-pQCT. Calcif Tissue Int 2015Google Scholar
  20. 20.
    Yu EW, Wewalka M, Ding SA, et al. Effects of Gastric Bypass and Gastric Banding on Bone Remodeling in Obese Patients with Type 2 Diabetes. J Clin Endocrinol Metab 2015:jc20153437Google Scholar
  21. 21.
    Vilarrasa N, de Gordejuela AG, Gomez-Vaquero C et al (2013) Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy. Obes Surg 23:2086–2091CrossRefGoogle Scholar
  22. 22.
    Chambers AP, Smith EP, Begg DP, Grayson BE, Sisley S, Greer T, Sorrell J, Lemmen L, LaSance K, Woods SC, Seeley RJ, D'Alessio DA, Sandoval DA (2014) Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. Am J Physiol Endocrinol Metab 306:E424–E432CrossRefGoogle Scholar
  23. 23.
    Miholic J, Orskov C, Holst JJ et al (1993) Postprandial release of glucagon-like peptide-1, pancreatic glucagon, and insulin after esophageal resection. Digestion 54:73–78CrossRefGoogle Scholar
  24. 24.
    Abegg K, Gehring N, Wagner CA, Liesegang A, Schiesser M, Bueter M, Lutz TA (2013) Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am J Physiol Regul Integr Comp Physiol 305:R999–r1009CrossRefGoogle Scholar
  25. 25.
    Holst JJ, Hartmann B, Gottschalck IB, Jeppesen PB, Miholic J, Bang Henriksen D (2007) Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand J Gastroenterol 42:814–820CrossRefGoogle Scholar
  26. 26.
    Cunningham D, Allum WH, Stenning SP, Thompson JN, van de Velde C, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ, MAGIC Trial Participants (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355:11–20CrossRefGoogle Scholar
  27. 27.
    Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TPJ (1996) A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 335:462–467CrossRefGoogle Scholar
  28. 28.
    van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen M, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hospers GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, ten Kate F, Creemers GJ, Punt CJ, Plukker JT, Verheul HM, Spillenaar Bilgen EJ, van Dekken H, van der Sangen M, Rozema T, Biermann K, Beukema JC, Piet AH, van Rij C, Reinders JG, Tilanus HW, van der Gaast A, CROSS Group (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366:2074–2084CrossRefGoogle Scholar
  29. 29.
    Keegan N, Keane F, Cuffe S et al (2014) ICORG 10-14: neo-AEGIS: a randomized clinical trial of neoadjuvant and adjuvant chemotherapy (modified MAGIC regimen) versus neoadjuvant chemoradiation (CROSS protocol) in adenocarcinoma of the esophagus and esophagogastric junction. J Clin Oncol 32:TPS4145CrossRefGoogle Scholar
  30. 30.
    Donohoe CL, O'Farrell NJ, Ravi N et al (2012) Evidence-based selective application of transhiatal esophagectomy in a high-volume esophageal center. World J Surg 36:98–103CrossRefGoogle Scholar
  31. 31.
    Okuyama M, Motoyama S, Maruyama K, Sasaki K, Sato Y, Ogawa JI (2008) Proton pump inhibitors relieve and prevent symptoms related to gastric acidity after esophagectomy. World J Surg 32:246–254CrossRefGoogle Scholar
  32. 32.
    Johansson J, Oberg S, Wenner J et al (2009) Impact of proton pump inhibitors on benign anastomotic stricture formations after esophagectomy and gastric tube reconstruction: results from a randomized clinical trial. Ann Surg 250:667–673CrossRefGoogle Scholar
  33. 33.
    Pickhardt PJ, Lee LJ, del Rio AM et al (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26:2194–2203CrossRefGoogle Scholar
  34. 34.
    Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595CrossRefGoogle Scholar
  35. 35.
    Baek KH, Jeon HM, Lee SS, Lim DJ, Oh KW, Lee WY, Rhee EJ, Han JH, Cha BY, Lee KW, Son HY, Kang SK, Kang MI (2008) Short-term changes in bone and mineral metabolism following gastrectomy in gastric cancer patients. Bone 42:61–67CrossRefGoogle Scholar
  36. 36.
    Gepp H, Koch M, Schwille PO, Erben RG, Rümenapf G, Schmiedl A, Fries W (2000) Vagus-sparing gastric fundectomy in the rat: development of osteopenia, relationship to urinary phosphate and net acid excretion, serum gastrin and vitamin D. Res Exp Med (Berl) 200:1–16Google Scholar
  37. 37.
    Hara H, Suzuki T, Aoyama Y (2000) Ingestion of the soluble dietary fibre, polydextrose, increases calcium absorption and bone mineralization in normal and total-gastrectomized rats. Br J Nutr 84:655–661CrossRefGoogle Scholar
  38. 38.
    Hirama Y, Morohashi T, Sano T, Maki K, Ohta A, Sakai N, Yamada S, Sasa R (2003) Fructooligosaccharides prevent disorders of the femoral neck following gastrectomy in growing rats. J Bone Miner Metab 21:294–298CrossRefGoogle Scholar
  39. 39.
    Iwamoto J, Uzawa M, Sato Y, Takeda T, Matsumoto H (2010) Effect of alendronate on bone mineral density and bone turnover markers in post-gastrectomy osteoporotic patients. J Bone Miner Metab 28:202–208CrossRefGoogle Scholar
  40. 40.
    Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, Szefc GV, Stewart L, Rogers SJ, Carter JT, Posselt AM, Shoback DM, Sellmeyer DE (2015) Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res 30:1377–1385CrossRefGoogle Scholar
  41. 41.
    Lancha A, Moncada R, Valenti V et al (2014) Comparative effects of gastric bypass and sleeve gastrectomy on plasma osteopontin concentrations in humans. Surg Endosc 28:2412–2420CrossRefGoogle Scholar
  42. 42.
    Elias E, Casselbrant A, Werling M, Abegg K, Vincent RP, Alaghband-Zadeh J, Olbers T, le Roux CW, Fändriks L, Wallenius V (2014) Bone mineral density and expression of vitamin D receptor-dependent calcium uptake mechanisms in the proximal small intestine after bariatric surgery. Br J Surg 101:1566–1575CrossRefGoogle Scholar
  43. 43.
    von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U (2004) Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism 53:918–921CrossRefGoogle Scholar
  44. 44.
    Mori N, Fujita H, Sueyoshi S, Aoyama Y, Yanagawa T, Shirouzu K (2007) Helicobacter pylori infection influences the acidity in the gastric tube as an esophageal substitute after esophagectomy. Dis Esophagus 20:333–340CrossRefGoogle Scholar
  45. 45.
    Tsubuku T, Fujita H, Tanaka T, Matono S, Nishimura K, Murata K, Sueyoshi S, Shirouzu K, Aoyama Y, Yanagawa T (2011) What influences the acidity in the gastric conduit in patients who underwent cervical esophagogastrostomy for cancer? Dis Esophagus 24:575–582CrossRefGoogle Scholar
  46. 46.
    Sakhaee K, Griffith C, Pak CY (2012) Biochemical control of bone loss and stone-forming propensity by potassium-calcium citrate after bariatric surgery. Surg Obes Relat Dis 8:67–72CrossRefGoogle Scholar
  47. 47.
    Muschitz C, Kocijan R, Haschka J et al (2015) The impact of vitamin D, calcium, protein supplementation, and physical exercise on bone metabolism after bariatric surgery: the BABS study. J Bone Miner ResGoogle Scholar
  48. 48.
    Svedlund J, Sjodin I, Dotevall G (1988) GSRS--a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci 33:129–134CrossRefGoogle Scholar
  49. 49.
    Caldeira RJ, Fonseca Vde M, Gomes SC Jr et al (2008) Prevalence of bone mineral disease among adolescents with cystic fibrosis. J Pediatr 84:18–25CrossRefGoogle Scholar
  50. 50.
    Haas S, Krins S, Knauerhase A, Löhr M (2015) Altered bone metabolism and bone density in patients with chronic pancreatitis and pancreatic exocrine insufficiency. JOP: J Pancreas 16:58–62Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • Jessie A. Elliott
    • 1
    • 2
  • Sean Casey
    • 2
  • Conor F. Murphy
    • 1
    • 2
  • Neil G. Docherty
    • 1
    • 3
  • Narayanasamy Ravi
    • 2
  • Peter Beddy
    • 4
  • John V. Reynolds
    • 2
  • Carel W. le Roux
    • 1
    • 3
    Email author
  1. 1.Metabolic Medicine, University College DublinConway Institute of Biomedical and Biomolecular ResearchDublin 4Ireland
  2. 2.Department of Surgery, Trinity Centre for Health SciencesTrinity College Dublin and St. James’s HospitalDublin 8Ireland
  3. 3.Department of Gastrosurgical Research and Education, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  4. 4.Department of RadiologySt. James’s HospitalDublin 8Ireland

Personalised recommendations