Advertisement

Archives of Osteoporosis

, 13:2 | Cite as

The QUALYOR (QUalité Osseuse LYon Orléans) study: a new cohort for non invasive evaluation of bone quality in postmenopausal osteoporosis. Rationale and study design

  • Roland ChapurlatEmail author
  • Jean-Baptiste Pialat
  • Blandine Merle
  • Elisabeth Confavreux
  • Florence Duvert
  • Elisabeth Fontanges
  • Farida Khacef
  • Sylvie Loiseau Peres
  • Anne-Marie Schott
  • Eric Lespessailles
Original Article

Abstract

Summary

The diagnostic performance of densitometry is inadequate. New techniques of non-invasive evaluation of bone quality may improve fracture risk prediction. Testing the value of these techniques is the goal of the QUALYOR cohort.

Introduction

The bone mineral density (BMD) of postmenopausal women who sustain osteoporotic fracture is generally above the World Health Organization definition for osteoporosis. Therefore, new approaches to improve the detection of women at high risk for fracture are warranted.

Methods

We have designed and recruited a new cohort to assess the predictive value of several techniques to assess bone quality, including high-resolution peripheral quantitative computerized tomography (HRpQCT), hip QCT, calcaneus texture analysis, and biochemical markers. We have enrolled 1575 postmenopausal women, aged at least 50, with an areal BMD femoral neck or lumbar spine T-score between − 1.0 and − 3.0. Clinical risk factors for fracture have been collected along with serum and blood samples.

Results

We describe the design of the QUALYOR study. Among these 1575 women, 80% were aged at least 60. The mean femoral neck T-score was − 1.6 and the mean lumbar spine T-score was −1.2. This cohort is currently being followed up.

Conclusions

QUALYOR will provide important information on the relationship between bone quality variables and fracture risk in women with moderately decreased BMD.

Keywords

Osteoporosis Fracture Osteopenia Microarchitecture 

Notes

Compliance with ethical standards

Approval of the conduct of the QUALYOR study was obtained from the Ethics Committee (CPP Sud-Est IV) and written informed consent was obtained from all study women, including a specific consent for DNA testing as required by French law. The study has been registered at ClinicalTrials.gov under the # NCT01150032.

Conflict of interest

None.

References

  1. 1.
    Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202.  https://doi.org/10.1016/j.bone.2003.10.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20(10):1813–1819.  https://doi.org/10.1359/JBMR.050609 CrossRefPubMedGoogle Scholar
  3. 3.
    Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164(10):1108–1112.  https://doi.org/10.1001/archinte.164.10.1108 CrossRefPubMedGoogle Scholar
  4. 4.
    Garnero P (2014) New developments in biological markers of bone metabolism in osteoporosis. Bone 66:46–55.  https://doi.org/10.1016/j.bone.2014.05.016 CrossRefPubMedGoogle Scholar
  5. 5.
    Touvier J, Winzenrieth R, Johansson H, Roux JP, Chaintreuil J, Toumi H, Jennane R, Hans D, Lespessailles E (2015) Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int 96(4):274–283.  https://doi.org/10.1007/s00223-015-9952-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24(1):77–85.  https://doi.org/10.1007/s00198-012-2188-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou CL, Blain H, Brazier M, Breuil V, Briot K, Chapurlat R, Chapuis L, Cohen Solal M, Fardellone P, Feron JM, Gauvain JB, Laroche M, Legrand E, Lespessailles E, Linglart A, Marcelli C, Roux C, Souberbielle JC, Tremollieres F, Weryha G, Cortet B (2015) Groupe de Recherche et d’Information sur les Ostéoporoses (GRIO). Trabecular Bone Score: Where are we now? Joint Bone Spine 82(5):320–325.  https://doi.org/10.1016/j.jbspin.2015.02.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR (2017) MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 46(2):323–337.  https://doi.org/10.1002/jmri.25647 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Manhard MK, Nyman JS, Does MD (2017) Advances in imaging approaches to fracture risk evaluation. Transl Res 181:1–14.  https://doi.org/10.1016/j.trsl.2016.09.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, van den Bergh J (2014) High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol 10:304–313CrossRefGoogle Scholar
  11. 11.
    Chapurlat R (2016) In vivo evaluation of bone microstructure in humans: Clinically useful? Bonekey Rep 5:813.  https://doi.org/10.1038/bonekey.2016.40 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lespessailles E, Ibrahim-Nasser N, Toumi H, Chapurlat R (2017) Contribution of high resolution peripheral quantitative CT to the management of bone and joint diseases. J Bone Spine.  https://doi.org/10.1016/j.jbspin.2017.04.012
  13. 13.
    Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29(3):570–580.  https://doi.org/10.1002/jbmr.2069 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Chapurlat R (2016) Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity. Bone 83:233–240.  https://doi.org/10.1016/j.bone.2015.10.012 CrossRefPubMedGoogle Scholar
  15. 15.
    Vilayphiou N, Boutroy S, Szulc P, van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–973.  https://doi.org/10.1002/jbmr.297 CrossRefPubMedGoogle Scholar
  16. 16.
    Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD (2017) Bone Microarchitecture Assessed by HR-pQCT as Predictor of Fracture Risk in Postmenopausal Women: The OFELY Study. J Bone Miner Res 32(6):1243–1251.  https://doi.org/10.1002/jbmr.3105 CrossRefPubMedGoogle Scholar
  17. 17.
    Briot K, Cortet B, Thomas T, Audran M, Blain H, Breuil V, Chapuis L, Chapurlat R, Fardellone P, Feron JM, Gauvain JB, Guggenbuhl P, Kolta S, Lespessailles E, Letombe B, Marcelli C, Orcel P, Seret P, Trémollières F, Roux C (2012) 2012 update of French guidelines for the pharmacological treatment of postmenopausal osteoporosis. Joint Bone Spine 79(3):304–313.  https://doi.org/10.1016/j.jbspin.2012.02.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148.  https://doi.org/10.1002/jbmr.5650080915 CrossRefPubMedGoogle Scholar
  19. 19.
    Chapurlat RD, Duboeuf F, Marion-Audibert HO, Kalpakçioglu B, Mitlak BH, Delmas PD (2006) Effectiveness of instant vertebral assessment to detect prevalent vertebral fracture. Osteoporos Int 17(8):1189–1195.  https://doi.org/10.1007/s00198-006-0121-2 CrossRefGoogle Scholar
  20. 20.
    Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R (2013) The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int 24(9):2455–2460.  https://doi.org/10.1007/s00198-013-2316-7 CrossRefPubMedGoogle Scholar
  21. 21.
    McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren Ö, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. J Bone Miner Res 31(5):940–948.  https://doi.org/10.1002/jbmr.2734 CrossRefPubMedGoogle Scholar
  22. 22.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515.  https://doi.org/10.1210/jc.2005-1258 CrossRefGoogle Scholar
  23. 23.
    Lespessailles E, Gadois C, Lemineur G, Do-Huu JP, Benhamou CL (2007) Bone texture analysis on direct digital radiographic images: precision study and relationship with bone mineral density at the os calcis. Calcif Tissue Int 80(2):97–102.  https://doi.org/10.1007/s00223-006-0216-y CrossRefPubMedGoogle Scholar
  24. 24.
    Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W (1994) Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 9(12):1909–1918.  https://doi.org/10.1002/jbmr.5650091210 CrossRefPubMedGoogle Scholar
  25. 25.
    Lespessailles E, Gadois C, Kousignian I, Neveu JP, Fardellone P, Kolta S, Roux C, Do-Huu JP, Benhamou CL (2008) Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int 19(7):1019–1028.  https://doi.org/10.1007/s00198-007-0532-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (1999) Relationship between plain radiographic patterns and three- dimensional trabecular architecture in the human calcaneus. Osteoporos Int 9(4):339–345.  https://doi.org/10.1007/s001980050156 CrossRefPubMedGoogle Scholar
  27. 27.
    Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Anal Mach Intell 6(4):518–523CrossRefGoogle Scholar
  28. 28.
    Caldwell CB, Moran EL, Bogoch ER (1998) Fractal dimension as a measure of altered trabecular bone in experimental inflammatory arthritis. J Bone Miner Res 13(6):978–985.  https://doi.org/10.1359/jbmr.1998.13.6.978 CrossRefPubMedGoogle Scholar
  29. 29.
    Harrar K, Hamami L, Lespessailles E, Jennane R (2013) Piecewise whittle estimator for bone radiograph characterization. Biomed Signal Process Control, Elsevier 8(6):657–666.  https://doi.org/10.1016/j.bspc.2013.06.009 CrossRefGoogle Scholar
  30. 30.
    Houam L, Hafiane A, Boukrouche A, Lespessailles E, Jennane E (2012) One dimensional local binary pattern for bone texture characterization. Pattern Anal Applic.  https://doi.org/10.1007/s10044-015-0288-4
  31. 31.
    Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, Ettinger B (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of osteoporotic fractures research group. N Engl J Med 339(11):733–738.  https://doi.org/10.1056/NEJM199809103391104 CrossRefPubMedGoogle Scholar
  32. 32.
    Chapurlat RD, Garnero P, Bréart G, Meunier PJ, Delmas PD (2000) Serum estradiol and sex hormone binding globulin and the risk of hip fracture in elderly women. J Bone Miner Res 15(9):1835–1841.  https://doi.org/10.1359/jbmr.2000.15.9.1835 CrossRefPubMedGoogle Scholar
  33. 33.
    Chapurlat RD, Garnero P, Bréart G, Meunier PJ, Delmas PD (2000) Serum type 1 collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone 27(2):283–286.  https://doi.org/10.1016/S8756-3282(00)00325-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Sornay-Rendu E, Duboeuf F, Boutroy S, Chapurlat RD (2016) Muscle mass is associated with incident fracture in postmenopausal women: the OFELY study. Bone 94:108–113.  https://doi.org/10.1016/j.bone.2016.10.024 CrossRefPubMedGoogle Scholar
  35. 35.
    Robbins J, Aragaki AK, Kooperberg C, Watts N, Wactawski-Wende J, Jackson RD, Leboff MS, Lewis CE, Chen Z, Stefanick ML, Cauley J (2007) Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA 298(20):2389–2398.  https://doi.org/10.1001/jama.298.20.2389 CrossRefPubMedGoogle Scholar
  36. 36.
    Chapurlat RD, Confavreux CB (2016) Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford) 55(10):1714–1725.  https://doi.org/10.1093/rheumatology/kev410 CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • Roland Chapurlat
    • 1
    Email author
  • Jean-Baptiste Pialat
    • 1
  • Blandine Merle
    • 1
  • Elisabeth Confavreux
    • 1
  • Florence Duvert
    • 1
  • Elisabeth Fontanges
    • 1
  • Farida Khacef
    • 2
  • Sylvie Loiseau Peres
    • 2
  • Anne-Marie Schott
    • 3
    • 4
  • Eric Lespessailles
    • 2
    • 3
  1. 1.INSERM UMR 1033, Université de LyonLyon cedex 03France
  2. 2.Hopital d’OrleansOrléans Cedex 2France
  3. 3.EA 4708-I3MTOUniversité d’OrléansOrléansFrance
  4. 4.EA 7425 HESPERUniversité de LyonLyonFrance

Personalised recommendations