Archives of Osteoporosis

, 12:78 | Cite as

Upper and lower limbs composition: a comparison between anthropometry and dual-energy X-ray absorptiometry in healthy people

  • Danila Diano
  • Federico Ponti
  • Sara Guerri
  • Daniele Mercatelli
  • Michele Amadori
  • Maria Pilar Aparisi Gómez
  • Giuseppe Battista
  • Giuseppe Guglielmi
  • Alberto BazzocchiEmail author
Original Article



The detection of changes in lean mass (LM) distribution can help to prevent disability. This study assessed the degree of association between anthropometric measurements and dual-energy X-ray absorptiometry (DXA) body composition (BC) parameters of the upper and lower limbs in a healthy general population and collected DXA age- and sex-specific values of BC that can be useful to build a reference standard.


The primary aim of this study was to investigate the reliability of some widely available anthropometric measurements in the assessment of body composition (BC) at the limbs, especially in terms of muscle mass, in a large sample of healthy subjects of different age bands and sex, using fat mass (FM) and lean mass (LM) parameters derived by dual-energy X-ray absorptiometry (DXA) as the gold standard. The secondary aim was to collect DXA age- and sex-specific values of BC of left and right limbs (upper and lower) in a healthy Italian population to be used as reference standards.


Two hundred fifty healthy volunteers were enrolled. Arm circumference (AC) and thigh circumference (ThC) were measured, and total and regional BC parameters were obtained by a whole-body DXA scan (Lunar iDXA, Madison, WI, USA; enCORE™ 2011 software version 13.6).


FM/LM showed only fair correlation with AC and ThC in females (r = 0.649 and 0.532, respectively); in males and in the total population, the correlation was low (r = 0.360 or lower, and p non-statistically significant). AC and ThC were not well representative of arms LM in both genders (females r = 0.452, males r = 0.530) independently of age. In general, men of all age groups showed higher values of LM and lean mass index (LMI) in both total and segmental upper and lower limbs. In males, the maximum LM and LMI were achieved in the fifth decade in both upper and lower limbs and then started to decrease with aging. In females, no significant modification with aging was identified in LM and LMI.


According to our results, anthropometry is not well representative of LM of arms in both genders, independently of age; therefore, a densitometric examination should be considered for a correct assessment of BC at limbs.


Body composition Muscle, Skeletal Sarcopenia Limbs Absorptiometry, Photon Anthropometry 



The authors would like to thank Dr. Monica Benni and Dr. Pasqualepaolo Pagliaro for their help in the organization of patients’ enrollment.

Compliance with ethical standards

Conflicts of interest


Ethical approval and informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration. Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Thibault R, Genton L, Pichard C (2012) Body composition: why, when and for who? Clin Nutr 31(4):435–447. PubMedCrossRefGoogle Scholar
  2. 2.
    Gallagher D, Shaheen I, Zafar K (2008) State-of-the-art measurements in human body composition: a moving frontier of clinical importance. Int J Body Compos Res 6(4):141–148PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bazzocchi A, Diano D, Ponti F, Andreone A, Sassi C, Albisinni U, Marchesini G, Battista G (2013) Health and ageing: a cross-sectional study of body composition. Clin Nutr 32(4):569–578. PubMedCrossRefGoogle Scholar
  4. 4.
    Schautz B, Later W, Heller M, Muller MJ, Bosy-Westphal A (2012) Total and regional relationship between lean and fat mass with increasing adiposity—impact for the diagnosis of sarcopenic obesity. Eur J Clin Nutr 66(12):1356–1361. PubMedCrossRefGoogle Scholar
  5. 5.
    Bazzocchi A, Diano D, Vicennati V, Pizzi C, De Filippo M, Pasquali R, Rossi C, Battista G (2013) Relationships between total and regional adiposity and epicardial fat in obese women: how can dual-energy X-ray absorptiometry be associated with echocardiographic epicardial fat measurements? Clin Obes 3(5):132–140. PubMedCrossRefGoogle Scholar
  6. 6.
    Beijers HJ, Ferreira I, Bravenboer B, Henry RM, Schalkwijk CG, Dekker JM, Nijpels G, Stehouwer CD (2014) Higher central fat mass and lower peripheral lean mass are independent determinants of endothelial dysfunction in the elderly: the Hoorn study. Atherosclerosis 233(1):310–318. PubMedCrossRefGoogle Scholar
  7. 7.
    Schouten F, Twisk JW, de Boer MR, Stehouwer CD, Serne EH, Smulders YM, Ferreira I (2011) Increases in central fat mass and decreases in peripheral fat mass are associated with accelerated arterial stiffening in healthy adults: the Amsterdam growth and health longitudinal study. Am J Clin Nutr 94(1):40–48. PubMedCrossRefGoogle Scholar
  8. 8.
    Bazzocchi A, Diano D, Albisinni U, Marchesini G, Battista G, Guglielmi G (2014) Liver in the analysis of body composition by dual-energy X-ray absorptiometry. Br J Radiol 87(1041):20140232. PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Falsarella GR, Coimbra IB, Barcelos CC, Iartelli I, Montedori KT, Santos MN, Neri AL, Coimbra AM (2014) Influence of muscle mass and bone mass on the mobility of elderly women: an observational study. BMC Geriatr 14:13. PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Skalsky AJ, Han JJ, Abresch RT, McDonald CM (2012) Regional and whole-body dual-energy X-ray absorptiometry to guide treatment and monitor disease progression in neuromuscular disease. Phys Med Rehabil Clin N Am 23(1):67–73, x. PubMedCrossRefGoogle Scholar
  11. 11.
    Rubbieri G, Mossello E, Di Bari M (2014) Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab 11(3):181–184PubMedPubMedCentralGoogle Scholar
  12. 12.
    Woodrow G (2009) Body composition analysis techniques in the aged adult: indications and limitations. Curr Opin Clin Nutr Metab Care 12(1):8–14. PubMedCrossRefGoogle Scholar
  13. 13.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896PubMedCrossRefGoogle Scholar
  14. 14.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156PubMedCrossRefGoogle Scholar
  15. 15.
    Roubenoff R (2003) Sarcopenia: effects on body composition and function. J Gerontol A Biol Sci Med Sci 58(11):1012–1017PubMedCrossRefGoogle Scholar
  16. 16.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423. PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pereira PM, da Silva GA, Santos GM, Petroski EL, Geraldes AA (2013) Development and validation of anthropometric equations to estimate appendicular muscle mass in elderly women. Nutr J 12:92. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kidde J, Marcus R, Dibble L, Smith S, Lastayo P (2009) Regional muscle and whole-body composition factors related to mobility in older individuals: a review. Physiother Can 61(4):197–209. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Scafoglieri A, Tresignie J, Provyn S, Marfell-Jones M, Reilly T, Bautmans I, Clarys JP (2012) Prediction of segmental lean mass using anthropometric variables in young adults. J Sports Sci 30(8):777–785. PubMedCrossRefGoogle Scholar
  20. 20.
    Guglielmi G, Ponti F, Agostini M, Amadori M, Battista G, Bazzocchi A (2016) The role of DXA in sarcopenia. Aging Clin Exp Res.
  21. 21.
    McCargar L (2007) New insights into body composition and health through imaging analysis. 2007 Ryley-Jeffs memorial lecture. Can J Diet Pract Res 68(3):160–165. PubMedCrossRefGoogle Scholar
  22. 22.
    Lee SY, Gallagher D (2008) Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care 11(5):566–572. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Iacobellis G (2005) Imaging of visceral adipose tissue: an emerging diagnostic tool and therapeutic target. Curr Drug Targets Cardiovasc Haematol Disord 5(4):345–353PubMedCrossRefGoogle Scholar
  24. 24.
    Bazzocchi A, Ponti F, Diano D, Moio A, Albisinni U, Pasquali R, Battista G (2014) Abdominal adiposity by ultrasonography: a “pocket” database for reference standard in Italian people. Prim Care Diabetes 8(4):358–364. PubMedCrossRefGoogle Scholar
  25. 25.
    Bazzocchi A, Filonzi G, Ponti F, Albisinni U, Guglielmi G, Battista G (2016) Ultrasound: which role in body composition? Eur J Radiol 85(8):1469–1480. PubMedCrossRefGoogle Scholar
  26. 26.
    Bazzocchi A, Filonzi G, Ponti F, Amadori M, Sassi C, Salizzoni E, Albisinni U, Battista G (2013) The role of ultrasonography in the evaluation of abdominal fat: analysis of technical and methodological issues. Acad Radiol 20(10):1278–1285. PubMedCrossRefGoogle Scholar
  27. 27.
    Bazzocchi A, Ponti F, Albisinni U, Battista G, Guglielmi G (2016) DXA: technical aspects and application. Eur J Radiol 85(8):1481–1492. PubMedCrossRefGoogle Scholar
  28. 28.
    Guglielmi G, Damilakis J, Solomou G, Bazzocchi A (2012) Quality assurance of imaging techniques used in the clinical management of osteoporosis. Radiol Med 117(8):1347–1354. PubMedCrossRefGoogle Scholar
  29. 29.
    Guglielmi G, Bazzocchi A (2016) Editorial. Eur J Radiol 85(8):1453–1455. PubMedCrossRefGoogle Scholar
  30. 30.
    Toombs RJ, Ducher G, Shepherd JA, De Souza MJ (2012) The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity 20(1):30–39. PubMedCrossRefGoogle Scholar
  31. 31.
    Bazzocchi A, Ciccarese F, Diano D, Spinnato P, Albisinni U, Rossi C, Guglielmi G (2012) Dual-energy X-ray absorptiometry in the evaluation of abdominal aortic calcifications. J Clin Densitom 15(2):198–204. PubMedCrossRefGoogle Scholar
  32. 32.
    Bazzocchi A, Ponti F, Cariani S, Diano D, Leuratti L, Albisinni U, Marchesini G, Battista G (2015) Visceral fat and body composition changes in a female population after RYGBP: a two-year follow-up by DXA. Obes Surg 25(3):443–451. PubMedCrossRefGoogle Scholar
  33. 33.
    Bazzocchi A, Ferrari F, Diano D, Albisinni U, Battista G, Rossi C, Guglielmi G (2012) Incidental findings with dual-energy X-ray absorptiometry: spectrum of possible diagnoses. Calcif Tissue Int 91(2):149–156. PubMedCrossRefGoogle Scholar
  34. 34.
    Coin A, Giannini S, Minicuci N, Rinaldi G, Pedrazzoni M, Minisola S, Rossini M, Del Puente A, Inelmen EM, Manzato E, Sergi G (2012) Limb fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20–80 year-old Italian population. Clin Nutr 31(4):506–511. PubMedCrossRefGoogle Scholar
  35. 35.
    Bazzocchi A, Diano D, Ponti F, Salizzoni E, Albisinni U, Marchesini G, Battista G (2014) A 360-degree overview of body composition in healthy people: relationships among anthropometry, ultrasonography, and dual-energy x-ray absorptiometry. Nutrition 30(6):696–701. PubMedCrossRefGoogle Scholar
  36. 36.
    Bruyère O, Beaudart C, Reginster JY, Buckinx F, Schoene D, Hirani V, Cooper C, Kanis JA, Rizzoli R, McCloskey E, Cederholm T, Cruz-Jentoft A, Freiberger E (2016) Assessment of muscle mass, muscle strength and physical performance in clinical practice: an international survey. Eur Geriatr Med 7(3):243–246. CrossRefGoogle Scholar
  37. 37.
    Beaudart C, McCloskey E, Bruyere O, Cesari M, Rolland Y, Rizzoli R, Araujo de Carvalho I, Amuthavalli Thiyagarajan J, Bautmans I, Bertiere MC, Brandi ML, Al-Daghri NM, Burlet N, Cavalier E, Cerreta F, Cherubini A, Fielding R, Gielen E, Landi F, Petermans J, Reginster JY, Visser M, Kanis J, Cooper C (2016) Sarcopenia in daily practice: assessment and management. BMC Geriatr 16(1):170. PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tian S, Mioche L, Denis JB, Morio B (2013) A multivariate model for predicting segmental body composition. Br J Nutr 110(12):2260–2270. PubMedCrossRefGoogle Scholar
  39. 39.
    Scafoglieri A, Tresignie J, Provyn S, Marfell-Jones M, George K, Clarys JP, Bautmans I (2013) Accuracy and concordance of anthropometry for measuring regional fat distribution in adults aged 20-55 years. Am J Hum Biol 25(1):63–70. PubMedCrossRefGoogle Scholar
  40. 40.
    Flavel NA, Olds TS, Buckley JD, Haren MT, Petkov J (2012) Anthropometric estimates of total and regional body fat in children aged 6–17 years. Acta Paediatr 101(12):1253–1259. PubMedCrossRefGoogle Scholar
  41. 41.
    Holmes JD, Andrews DM, Durkin JL, Dowling JJ (2005) Predicting in vivo soft tissue masses of the lower extremity using segment anthropometric measures and DXA. J Appl Biomech 21(4):371–382PubMedCrossRefGoogle Scholar
  42. 42.
    Arthurs KL, Andrews DM (2009) Upper extremity soft and rigid tissue mass prediction using segment anthropometric measures and DXA. J Biomech 42(3):389–394. PubMedCrossRefGoogle Scholar
  43. 43.
    Gobbo LA, Ritti-Dias RM, Avelar A, Silva AM, Coelho-e-Silva MJ, Cyrino ES (2013) Changes in skeletal muscle mass assessed by anthropometric equations after resistance training. Int J Sports Med 34(1):28–33. PubMedCrossRefGoogle Scholar
  44. 44.
    Jensen SM, Molgaard C, Ejlerskov KT, Christensen LB, Michaelsen KF, Briend A (2015) Validity of anthropometric measurements to assess body composition, including muscle mass, in 3-year-old children from the SKOT cohort. Matern Child Nutr 11(3):398–408. PubMedCrossRefGoogle Scholar
  45. 45.
    Ritchie CB, Davidson RT (2007) Regional body composition in college-aged Caucasians from anthropometric measures. Nutr Metab 4:29. CrossRefGoogle Scholar
  46. 46.
    Bell W, Cobner DM, Evans WD (2000) Prediction and validation of fat-free mass in the lower limbs of young adult male Rugby Union players using dual-energy X-ray absorptiometry as the criterion measure. Ergonomics 43(10):1708–1717. PubMedCrossRefGoogle Scholar
  47. 47.
    Carvalho HM, Coelho-e-Silva MJ, Franco S, Figueiredo AJ, Tavares OM, Ferry B, Hidalgo-Hermanni I, Courteix D, Malina RM (2012) Agreement between anthropometric and dual-energy X-ray absorptiometry assessments of lower-limb volumes and composition estimates in youth-club rugby athletes. Appl Physiol Nutr Metab 37(3):463–471. PubMedCrossRefGoogle Scholar
  48. 48.
    Tsai HJ, Chang FK (2017) Associations between body mass index, mid-arm circumference, calf circumference, and functional ability over time in an elderly Taiwanese population. PLoS One 12(4):e0175062. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Landi F, Onder G, Russo A, Liperoti R, Tosato M, Martone AM, Capoluongo E, Bernabei R (2014) Calf circumference, frailty and physical performance among older adults living in the community. Clin Nutr 33(3):539–544. PubMedCrossRefGoogle Scholar
  50. 50.
    Landi F, Russo A, Liperoti R, Pahor M, Tosato M, Capoluongo E, Bernabei R, Onder G (2010) Midarm muscle circumference, physical performance and mortality: results from the aging and longevity study in the Sirente geographic area (ilSIRENTE study). Clin Nutr 29(4):441–447. PubMedCrossRefGoogle Scholar
  51. 51.
    Rolland Y, Lauwers-Cances V, Cournot M, Nourhashemi F, Reynish W, Riviere D, Vellas B, Grandjean H (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51(8):1120–1124PubMedCrossRefGoogle Scholar
  52. 52.
    Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116(9):1081–1093. PubMedCrossRefGoogle Scholar
  53. 53.
    U.S. Department of Health and Human Services (USDHHS) (2008) 2008 physical activity guidelines for Americans. Washington, DC: USDHHS.
  54. 54.
    Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57(12):M772–M777PubMedCrossRefGoogle Scholar
  55. 55.
    Morosano ME, Menoyo IM, Tomat MF, Masoni AM, Pezzotto SM (2017) A simple anthropometric tool for the assessment of pre-sarcopenia in postmenopausal women. Climacteric 20(3):256–261. PubMedCrossRefGoogle Scholar
  56. 56.
    Ishii S, Tanaka T, Shibasaki K, Ouchi Y, Kikutani T, Higashiguchi T, Obuchi SP, Ishikawa-Takata K, Hirano H, Kawai H, Tsuji T, Iijima K (2014) Development of a simple screening test for sarcopenia in older adults. Geriatr Gerontol Int 14(Suppl 1):93–101. PubMedCrossRefGoogle Scholar
  57. 57.
    Kwok T, Woo J, Chan HH, Lau E (1997) The reliability of upper limb anthropometry in older Chinese people. Int J Obes Relat Metab Disord 21(7):542–547PubMedCrossRefGoogle Scholar
  58. 58.
    Xiao Z, Guo B, Gong J, Tang Y, Shang J, Cheng Y, Xu H (2016) Sex- and age-specific percentiles of body composition indices for Chinese adults using dual-energy X-ray absorptiometry. Eur J Nutr.
  59. 59.
    Clark P, Denova-Gutierrez E, Ambrosi R, Szulc P, Rivas-Ruiz R, Salmeron J (2016) Reference values of total lean mass, appendicular lean mass, and fat mass measured with dual-energy X-ray absorptiometry in a healthy Mexican population. Calcif Tissue Int 99(5):462–471. PubMedCrossRefGoogle Scholar
  60. 60.
    Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA (2014) Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int 94(4):363–372. PubMedCrossRefGoogle Scholar
  61. 61.
    Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JA (2009) Exercise and bone mass in adults. Sports Med 39(6):439–468.–200939060-00002 PubMedCrossRefGoogle Scholar
  62. 62.
    Heinonen A, Oja P, Sievanen H, Pasanen M, Vuori I (1998) Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res 13(3):483–490. PubMedCrossRefGoogle Scholar
  63. 63.
    Xiang J, Chen Y, Wang Y, Su S, Wang X, Xie B, Zhang Q, Liu M (2017) Lean mass and fat mass as mediators of the relationship between physical activity and bone mineral density in postmenopausal women. J Women’s Health 26(5):461–466. CrossRefGoogle Scholar
  64. 64.
    Shin H, Liu PY, Panton LB, Ilich JZ (2014) Physical performance in relation to body composition and bone mineral density in healthy, overweight, and obese postmenopausal women. J Geriatr Phys Ther 37(1):7–16. PubMedCrossRefGoogle Scholar
  65. 65.
    Ramires VV, Dumith SC, Wehrmeister FC, Hallal PC, Menezes AM, Goncalves H (2016) Physical activity throughout adolescence and body composition at 18 years: 1993 Pelotas (Brazil) birth cohort study. Int J Behav Nutr Phys Act 13(1):105. PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55(4):M221–M231PubMedCrossRefGoogle Scholar
  67. 67.
    Buchman AS, Wilson RS, Boyle PA, Tang Y, Fleischman DA, Bennett DA (2007) Physical activity and leg strength predict decline in mobility performance in older persons. J Am Geriatr Soc 55(10):1618–1623. PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • Danila Diano
    • 1
    • 2
  • Federico Ponti
    • 2
  • Sara Guerri
    • 2
  • Daniele Mercatelli
    • 1
  • Michele Amadori
    • 2
  • Maria Pilar Aparisi Gómez
    • 3
    • 4
  • Giuseppe Battista
    • 2
  • Giuseppe Guglielmi
    • 5
    • 6
  • Alberto Bazzocchi
    • 1
    Email author
  1. 1.Department of Diagnostic and Interventional RadiologyThe “Rizzoli” Orthopaedic InstituteBolognaItaly
  2. 2.Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Division of Radiology S.Orsola-Malpighi HospitalUniversity of BolognaBolognaItaly
  3. 3.Department of RadiologyAuckland City HospitalAucklandNew Zealand
  4. 4.Department of RadiologyHospital Nueve de OctubreValenciaSpain
  5. 5.Department of RadiologyUniversity of FoggiaFoggiaItaly
  6. 6.Department of RadiologyScientific Institute “Casa Sollievo della Sofferenza” HospitalFoggiaItaly

Personalised recommendations