Archives of Osteoporosis

, 11:29 | Cite as

The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement

  • Shalinie King
  • Iven Klineberg
  • Itamar Levinger
  • Tara C. Brennan-SperanzaEmail author



Patients with type 2 diabetes mellitus have a higher risk of dental and/or orthopaedic implant failure. However, the mechanism behind this phenomenon is unclear, and animal studies may prove useful in shedding light on the processes involved. This review considers the available literature on rat models of diabetes and titanium implantation.


The process of osseointegration whereby direct contact is achieved between bone and an implant surface depends on healthy bone metabolism. Collective evidence suggests that hyperglycaemia adversely affects bone turnover and the quality of the organic matrix resulting in an overall deterioration in the quality, resilience and structure of the bone tissue. This in turn results in compromised osseointegration in patients receiving dental and orthopaedic implants. The incidence of diabetes mellitus (DM), which is a chronic metabolic disorder resulting in hyperglycaemia, is rising. Of particular significance is the rising incidence of adult onset type 2 diabetes mellitus (T2DM) in an ageing population. Understanding the effects of hyperglycaemia on osseointegration will enable clinicians to manage health outcomes for patients receiving implants. Much of our understanding of how hyperglycaemia affects osseointegration comes from animal studies.


In this review, we critically analyse the current animal studies.


Our review has found that most studies used a type 1 diabetes mellitus (T1DM) rodent model and looked at a young male population of rodents. The pathophysiology of T1DM is however very different to that of T2DM and is not representative of T2DM, the incidence of which is rising in the ageing adult population. Genetically modified rats have been used to model T2DM, but none of these studies have included female rats and the metabolic changes in bone for some of these models used are not adequately characterized.


Therefore, the review suggests that the study population needs to be broadened to include both T1DM and T2DM models, older rats as well as young rats, and importantly animals from both sexes to reflect more accurately clinical practice.


Animal models Implants Biochemical markers of bone turnover 



A/Prof. Levinger was supported by Future Leader Fellowship (ID 100040) from the National Heart Foundation of Australia, and Dr. Brennan-Speranza was supported by an NHMRC Early Career Research Fellowship (ID 1013295).

Compliance with ethical standards

Conflict of interest



  1. 1.
    Association AD (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Supplement 1):S67–S74CrossRefGoogle Scholar
  2. 2.
    International Diabetes Federation. IDF Diabetes, 7th ed. Brussels, Belgium: International Diabetes Federation, Scholar
  3. 3.
    Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A (1969) Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3(2):81–100CrossRefPubMedGoogle Scholar
  4. 4.
    Marx RE, Garg AK (1998) Bone structure, metabolism, and physiology: its impact on dental implantology. Implant Dent 7(4):267–276CrossRefPubMedGoogle Scholar
  5. 5.
    Bryant SR, Zarb GA (1998) Osseointegration of oral implants in older and younger adults. Int J Oral Maxillofac Implants 13(4):492–499PubMedGoogle Scholar
  6. 6.
    Chrcanovic B, Albrektsson T, Wennerberg A (2014) Diabetes and oral implant failure a systematic review. J Dent Res 93(9):859–867CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bell RH, Hye RJ (1983) Animal models of diabetes mellitus: physiology and pathology. J Surg Res 35(5):433–460CrossRefPubMedGoogle Scholar
  9. 9.
    Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451PubMedGoogle Scholar
  10. 10.
    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, et al. (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(1):45–49CrossRefPubMedGoogle Scholar
  11. 11.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782CrossRefPubMedGoogle Scholar
  12. 12.
    Pedrazzoni M, Ciotti G, Pioli G, Girasole G, Davoli L, Palummeri E, et al. (1989) Osteocalcin levels in diabetic subjects. Calcif Tissue Int 45(6):331–336CrossRefPubMedGoogle Scholar
  13. 13.
    Shu A, Yin M, Stein E, Cremers S, Dworakowski E, Ives R, et al. (2012) Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 23(2):635–641CrossRefPubMedGoogle Scholar
  14. 14.
    Achemlal L, Tellal S, Rkiouak F (2005) Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol 24:493–496CrossRefPubMedGoogle Scholar
  15. 15.
    Knudsen ST, Foss CH, Poulsen PL, Andersen NH, Mogensen CE, Rasmussen LM (2003) Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. European journal of endocrinology / European Federation of Endocrine Societies 149(1):39–42CrossRefGoogle Scholar
  16. 16.
    Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Current osteoporosis reports 5(2):62–66CrossRefPubMedGoogle Scholar
  17. 17.
    Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, et al. (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38(3):300–309CrossRefPubMedGoogle Scholar
  18. 18.
    Kume S, Kato S (2005) Yamagishi Si, Inagaki Y, Ueda S, Arima N, et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20(9):1647–1658CrossRefPubMedGoogle Scholar
  19. 19.
    Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, et al. (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8(2):260–270PubMedGoogle Scholar
  20. 20.
    Levinger I, Seeman E, Jerums G, McConell GK, Rybchyn MS, Cassar S, et al. (2016) Glucose-loading reduces bone remodeling in women and osteoblast function in vitro. Physiological reports 4(3):e12700CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, et al. (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism 95(11):5045–5055CrossRefGoogle Scholar
  22. 22.
    Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T (2008) Type 2 diabetes impairs implant osseointegration capacity in rats. Int J Oral Maxillofac Implants 23:237–246PubMedGoogle Scholar
  23. 23.
    Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14(3):251–262CrossRefPubMedGoogle Scholar
  24. 24.
    Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229.Google Scholar
  25. 25.
    Nevins ML, Karimbux NY, Weber HP, Giannobile WV, Fiorellini JP (1998) Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 13(5):620–629PubMedGoogle Scholar
  26. 26.
    McCracken MS, Aponte-Wesson R, Chavali R, Lemons JE (2006) Bone associated with implants in diabetic and insulin-treated rats. Clin Oral Implants Res 17(5):495–500CrossRefPubMedGoogle Scholar
  27. 27.
    Kwon PT, Rahman SS, Kim DM, Kopman JA, Karimbux NY, Fiorellini JP (2005) Maintenance of osseointegration utilizing insulin therapy in a diabetic rat model. J Periodontol 76(4):621–626CrossRefPubMedGoogle Scholar
  28. 28.
    Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE, Sannomiya P (2003) Bone formation around titanium implants in the rat tibia: role of insulin. Implant Dent 12(3):242–251CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto K, Yamamoto S, Iizuka T, Obata T, Imai Y, Yanagawa A, et al. (2006) Effect of duration of hyperglycemia on osseointegration around titanium implants. Journal of Oral Biosciences 48(1):62–73CrossRefGoogle Scholar
  30. 30.
    Kuchler U, Spilka T, Baron K, Tangl S, Watzek G, Gruber R (2011) Intermittent parathyroid hormone fails to stimulate osseointegration in diabetic rats. Clin Oral Implants Res 22(5):518–523CrossRefPubMedGoogle Scholar
  31. 31.
    Molon RS, Morais-Camilo JAND, Verzola MHA, Faeda RS, Pepato MT, Marcantonio E (2013) Impact of diabetes mellitus and metabolic control on bone healing around osseointegrated implants: removal torque and histomorphometric analysis in rats. Clin Oral Implants Res 24(7):831–837CrossRefPubMedGoogle Scholar
  32. 32.
    Retzepi M, Lewis MP, Donos N (2010) Effect of diabetes and metabolic control on de novo bone formation following guided bone regeneration. Clin Oral Implants Res 21(1):71–79CrossRefPubMedGoogle Scholar
  33. 33.
    Margonar RDDSMS, Sakakura CEDDSMS, Holzhausen MDDSMS, Pepato MTP, Candia Alba RJDDS, Marcantonio EJDDSMSP (2003) The influence of diabetes mellitus and insulin therapy on biomechanical retention around dental implants: a study in rabbits. Implant Dent 12(4):333–339CrossRefPubMedGoogle Scholar
  34. 34.
    Donos N, Dereka X, Mardas N (2015) Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 68(1):99–121CrossRefGoogle Scholar
  35. 35.
    Hough S, Avioli LV, Bergfeld MA, Fallon MD, Slatopolsky E, Teitelbaum SL (1981) Correction of abnormal bone and mineral metabolism in chronic streptozotocin-induced diabetes mellitus in the rat by insulin therapy. Endocrinology 108(6):2228–2234CrossRefPubMedGoogle Scholar
  36. 36.
    Nevins ML, Karimbux NY (1998) Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 13(5):620–629PubMedGoogle Scholar
  37. 37.
    Ajami E, Mahno E, Mendes V, Bell S, Moineddin R, Davies J (2014) Bone healing and the effect of implant surface topography on osteoconduction in hyperglycemia. Acta Biomater 10(1):394–405CrossRefPubMedGoogle Scholar
  38. 38.
    de Morais JA, Trindade-Suedam IK, Pepato MT, Marcantonio E Jr, Wenzel A, Scaf G (2009) Effect of diabetes mellitus and insulin therapy on bone density around osseointegrated dental implants: a digital subtraction radiography study in rats. Clin Oral Implants Res 20(8):796–801Google Scholar
  39. 39.
    Kotsovilis S, Karoussis IK, Fourmousis I (2006) A comprehensive and critical review of dental implant placement in diabetic animals and patients. Clin Oral Implants Res 17(5):587–599CrossRefPubMedGoogle Scholar
  40. 40.
    Glösel B, Kuchler U, Watzek G, Gruber R (2010) Review of dental implant rat research models simulating osteoporosis or diabetes. International Journal of Oral & Maxillofacial Implants 25(3):516–524Google Scholar
  41. 41.
    Casap N, Nimri S, Ziv E, Sela J, Samuni Y (2008) Type 2 diabetes has minimal effect on osseointegration of titanium implants in Psammomys obesus. Clin Oral Implants Res 19(5):458–464CrossRefPubMedGoogle Scholar
  42. 42.
    Wang F, Song Y-L, Li D-H, Li C-x, Wang Y, Zhang N, et al. (2010) Type 2 diabetes mellitus impairs bone healing of dental implants in GK rats. Diabetes Res Clin Pract 88(1):e7–e9CrossRefPubMedGoogle Scholar
  43. 43.
    Wang F, Song YL, Li CX, Li DH, Zhang HP, Ma AJ, et al. (2010) Sustained release of insulin-like growth factor-1 from poly(lactide-co-glycolide) microspheres improves osseointegration of dental implants in type 2 diabetic rats. Eur J Pharmacol 640(1–3):226–232CrossRefPubMedGoogle Scholar
  44. 44.
    Wang B, Song Y, Wang F, Li D, Zhang H, Ma A, et al. (2011) Effects of local infiltration of insulin around titanium implants in diabetic rats. Br J Oral Maxillofac Surg 49(3):225–229CrossRefPubMedGoogle Scholar
  45. 45.
    Yu M, Zhou W, Song Y, Yu F, Li D, Na S, et al. (2011) Development of mesenchymal stem cell-implant complexes by cultured cells sheet enhances osseointegration in type 2 diabetic rat model. Bone 49(3):387–394CrossRefPubMedGoogle Scholar
  46. 46.
    Zou GK, Song YL, Zhou W, Yu M, Liang LH, Sun DC, et al. (2012) Effects of local delivery of bFGF from PLGA microspheres on osseointegration around implants in diabetic rats. Oral surgery, oral medicine, oral pathology and oral radiology 114(3):284–289CrossRefPubMedGoogle Scholar
  47. 47.
    Sugita Y, Honda Y, Kato I, Kubo K, Maeda H, Ogawa T (2014) Role of photofunctionalization in mitigating impaired osseointegration associated with type 2 diabetes in rats. Int J Oral Maxillofac Implants 29(6):1293–1300PubMedGoogle Scholar
  48. 48.
    Liu Z, Zhou W, Tangl S, Liu S, Xu X, Rausch-Fan X (2015) Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats. Br J Oral Maxillofac Surg 53(8):748–753CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou W, Liu Z, Yao J, Chi F, Dong K, Yue X, et al. (2015) The effects of exenatide microsphere on serum BGP and ALP levels in ZDF rats after implantation. Clin Implant Dent Relat Res 17(4):765–770CrossRefPubMedGoogle Scholar
  50. 50.
    Hashiguchi C, Kawamoto S, Kasai T, Nishi Y, Nagaoka E (2014) Influence of an antidiabetic drug on biomechanical and histological parameters around implants in type 2 diabetic rats. Implant Dent 23(3):264–269CrossRefPubMedGoogle Scholar
  51. 51.
    Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabetic medicine: a journal of the British Diabetic Association 22(4):359–370CrossRefGoogle Scholar
  52. 52.
    Hughes P, Tanner J (1970) The assessment of skeletal maturity in the growing rat. J Anat 106(Pt 2):371PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kawano K, Hirashima T, Mori S, Natori T (1994) OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 24(Suppl):S317–S320CrossRefPubMedGoogle Scholar
  54. 54.
    Fukaya N, Mochizuki K, Shimada M, Goda T (2009) The α-glucosidase inhibitor miglitol decreases glucose fluctuations and gene expression of inflammatory cytokines induced by hyperglycemia in peripheral leukocytes. Nutrition 25(6):657–667CrossRefPubMedGoogle Scholar
  55. 55.
    Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, et al. (2014) Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 25(1):66–72CrossRefPubMedGoogle Scholar
  56. 56.
    Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, et al. (2013) Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 92(10):533–540CrossRefPubMedGoogle Scholar
  57. 57.
    Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, et al. (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13(1):18–19CrossRefPubMedGoogle Scholar
  58. 58.
    Peterson RG, Shaw WN, Neel M-A, Little LA, Eichberg J (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J 32(3):16–19CrossRefGoogle Scholar
  59. 59.
    Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472PubMedGoogle Scholar
  60. 60.
    Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, et al. (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47(3):358–364CrossRefPubMedGoogle Scholar
  61. 61.
    Fajardo RJ, Karim L, Calley VI, Bouxsein ML (2014) A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 29(5):1025–1040CrossRefPubMedGoogle Scholar
  62. 62.
    GOTO Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119(1):85–90CrossRefPubMedGoogle Scholar
  63. 63.
    Abdel-Halim SM, Guenifi A, Luthman H, Grill V, Efendic S, Östenson C-G (1994) Impact of diabetic inheritance on glucose tolerance and insulin secretion in spontaneously diabetic GK-Wistar rats. Diabetes 43(2):281–288CrossRefPubMedGoogle Scholar
  64. 64.
    Cao Y, DuBois DC, Sun H, Almon RR, Jusko WJ (2011) Modeling diabetes disease progression and salsalate intervention in Goto-Kakizaki rats. J Pharmacol Exp Ther 339(3):896–904CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Portha B, Giroix M, Serradas P, Gangnerau M, Movassat J, Rajas F, et al. (2001) Beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 50(suppl 1):S89CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang L, Liu Y, Wang D, Zhao X, Qiu Z, Ji H, et al. (2009) Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol 46(2):119–126CrossRefPubMedGoogle Scholar
  67. 67.
    Scherzer P, Katalan S, Got G, Pizov G, Londono I, Gal-Moscovici A, et al. (2011) Psammomys obesus, a particularly important animal model for the study of the human diabetic nephropathy. Anatomy & cell biology 44(3):176–185CrossRefGoogle Scholar
  68. 68.
    Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR (2000) Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Journal of Diabetes Research 1(3):177–184Google Scholar
  69. 69.
    Amir G, Adler J, Menczel J (1991) Histomorphometric analysis of weight bearing bones of diabetic and non-diabetic sand rats (Psammomys obesus). Diabetes research (Edinburgh, Scotland) 17(3):135–137Google Scholar
  70. 70.
    Srinivasan K, Patole PS, Kaul CL, Ramarao P (2004) Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol 26(5):327–333CrossRefPubMedGoogle Scholar
  71. 71.
    Storlien L, James D, Burleigh K, Chisholm D, Kraegen E (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. American Journal of Physiology-Endocrinology And Metabolism 251(5):E576–EE83Google Scholar
  72. 72.
    Lavet C, Martin A, Linossier MT, Bossche AV, Laroche N, Thomas M, et al. (2016) Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats. J Bone Miner Res 31(1):98–115CrossRefPubMedGoogle Scholar
  73. 73.
    Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17(5):536–543PubMedGoogle Scholar
  74. 74.
    Klein GL (2014) Insulin and bone: recent developments. World J Diabetes 5(1):14–16CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Leslie WD, Rubin MR, Schwartz AV, Kanis JA (2012) Type 2 diabetes and bone. J Bone Miner Res Off J Am Soc Bone Miner Res 27(11):2231–2237CrossRefGoogle Scholar
  76. 76.
    McCullough LD, de Vries GJ, Miller VM, Becker JB, Sandberg K, McCarthy MM (2014) NIH initiative to balance sex of animals in preclinical studies: generative questions to guide policy, implementation, and metrics. Biol Sex Differ 5:15CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Compston JE (2001) Sex steroids and bone. Physiol Rev 81(1):419–447PubMedGoogle Scholar
  78. 78.
    Gale EA, Gillespie KM (2001) Diabetes and gender. Diabetologia 44(1):3–15CrossRefPubMedGoogle Scholar
  79. 79.
    Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ: British Medical Journal 332(7533):73–78CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    French D, Larjava H, Ofec R (2015) Retrospective cohort study of 4591 Straumann implants in private practice setting, with up to 10-year follow-up. Part 1: multivariate survival analysis. Clin Oral Implants Res 26(11):1345–1354CrossRefPubMedGoogle Scholar
  81. 81.
    Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. (2016) Factors influencing early dental implant failures. J Dent ResGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  • Shalinie King
    • 1
  • Iven Klineberg
    • 1
  • Itamar Levinger
    • 2
  • Tara C. Brennan-Speranza
    • 3
    Email author
  1. 1.Faculty of DentistryUniversity of SydneySydneyAustralia
  2. 2.Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL)Victoria UniversityMelbourneAustralia
  3. 3.Department of Physiology and Bosch Institute for Medical ResearchUniversity of SydneySydneyAustralia

Personalised recommendations