Archives of Osteoporosis

, Volume 6, Issue 1–2, pp 39–49 | Cite as

Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon

  • Felicia C. Madimenos
  • J. Josh Snodgrass
  • Aaron D. Blackwell
  • Melissa A. Liebert
  • Tara J. Cepon
  • Lawrence S. Sugiyama
Original Article

Abstract

Summary

Minimal data on bone mineral density changes are available from populations in developing countries. Using calcaneal quantitative ultrasound (QUS) techniques, the current study contributes to remedying this gap in the literature by establishing a normative data set on the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon.

Purpose

The paucity of bone mineral density (BMD) data from populations in developing countries partially reflects the lack of diagnostic resources in these areas. Portable QUS techniques now enable researchers to collect bone health data in remote field-based settings and to contribute normative data from developing regions. The main objective of this study is to establish normative QUS data for two Ecuadorian Amazonian populations—the indigenous Shuar and non-Shuar Colonos. The effects of ethnic group, sex, age, and body size on QUS parameters are also considered.

Methods

A study cohort consisting of 227 Shuar and 261 Colonos (15–91 years old) were recruited from several small rural Ecuadorian communities in the Upano River Valley. Calcaneal QUS parameters were collected on the right heel of each participant using a Sahara bone sonometer. Three ultrasound generated parameters were employed: broadband ultrasound attenuation (BUA), speed of sound (SOS), and calculated heel BMD (hBMD).

Results

In both populations and sexes, all QUS values were progressively lower with advancing age. Shuar have significantly higher QUS values than Colonos, with most pronounced differences found between pre-menopausal Shuar and Colono females. Multiple regression analyses show that age is a key predictor of QUS while weight alone is a less consistent determinant. Both Shuar males and females display comparatively greater QUS parameters than other reference populations.

Conclusions

These normative data for three calcaneal QUS parameters will be useful for predicting fracture risk and determining diagnostic QUS criteria of osteoporosis in non-industrialized populations in South America and elsewhere.

Keywords

Bone mineral density Shuar Colonos Calcaneal ultrasound Developing country 

References

  1. 1.
    Barkmann R, Laugier P, Moser U, Dencks S, Padilla F, Haiat G, Heller M, Gluer CC (2007) A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone 40:37–44PubMedCrossRefGoogle Scholar
  2. 2.
    Gerdhem P, Dencker M, Ringsberg K, Akesson K (2008) Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur J Appl Physiol 102:173–180PubMedCrossRefGoogle Scholar
  3. 3.
    Nayak S, Olkin I, Liu H, Grabe M, Gould MK, Allen IE, Owens DK, Bravata DM (2006) Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 144:832–841PubMedGoogle Scholar
  4. 4.
    Handa R, Kalla AA, Ghassan M (2008) Osteoporosis in developing countries. Best Pract Res Clin Rhematol 22:693–708CrossRefGoogle Scholar
  5. 5.
    Woolf AD, Pfleger B (2005) Burden of osteoporosis and fractures in developing countries. Curr Osteoporos Rep 3:85–91CrossRefGoogle Scholar
  6. 6.
    Rubenstein S (2001) Colonialism, the Shuar Federation, and the Ecuadorian state. Environ Plann D 19:263–293CrossRefGoogle Scholar
  7. 7.
    Madimenos FC, Snodgrass JJ, Blackwell AD, Liebert MA, Sugiyama LS (2011) Physical activity in an indigenous Ecuadorian forager-horticulturalist population as measured using accelerometry. Am J Hum Biol doi:10.1002/ajhb.21163
  8. 8.
    Bunker VW (1994) The role of nutrition in osteoporosis. Br J Biomed Sci 51:228–240PubMedGoogle Scholar
  9. 9.
    Hernandez-Avila M, Stampfer MJ, Ravnikar VA, Willet WC, Schiff I, Francis M, Longscope C, Mckinlay SM, Longcope C (1993) Caffeine and other predictors of bone density among pre-and perimenopausal women. Epidemiology 4:128–134PubMedCrossRefGoogle Scholar
  10. 10.
    Lazenby R (1997) Bone loss, traditional diet, and cold adaptation in Arctic populations. Am J Hum Biol 9:329–341CrossRefGoogle Scholar
  11. 11.
    Sampson H (2002) Alcohol and other factors affecting osteoporosis risk in women. Alcohol Res Health 264:292–296Google Scholar
  12. 12.
    Mazess RB (1978) Bone mineral in Vilcabamba, Ecuador. Am J Roentgenol 130:671–674Google Scholar
  13. 13.
    da Rocha FA, Ribiero AR (2003) Low incidence of hip fractures in an equatorial area. Osteoporos Int 14:496–499CrossRefGoogle Scholar
  14. 14.
    Bartl R, Frisch B (2004) Osteoporosis: diagnosis, prevention, therapy. Berlin, GermanyGoogle Scholar
  15. 15.
    Lee M, Nahhas RW, Choh AC, Demerath EW, Duren DL, Chumlea WC et al (2010) Longitudinal changes in calcaneal quantitative ultrasound measures during childhood. Osteoporos Int. doi:10.1007/s00198-010-1458-0 Google Scholar
  16. 16.
    Murphy S, Khaw KT, May H, Compston E (1994) Parity and bone mineral density in middle-aged women. Osteoporos Int 4:162–166PubMedCrossRefGoogle Scholar
  17. 17.
    Nguyen TV, Jones G, Sambrook PN, White CP, Kelly PJ, Eisman JA (1995) Effects of estrogen exposure and reproductive factors on bone mineral density and osteoporotic fractures. J Clin Endocrinol Metab 80:2709–2714PubMedCrossRefGoogle Scholar
  18. 18.
    Streeten EA, Ryan KA, McBride DJ, Pollin TI, Shuldiner AR, Mitchell BD (2005) The relationship between parity and bone mineral density in women characterized by a homogenous lifestyle and high parity. J Clin Endocr Metab 90:4536–4541PubMedCrossRefGoogle Scholar
  19. 19.
    Eaton SB, Pike MC, Short RV, Lee NC, Trussell J, Hatcher RA, Wood JW, Worthman CM et al (1994) Women’s reproductive cancers in evolutionary context. Q Rev Biol 69:353–367PubMedCrossRefGoogle Scholar
  20. 20.
    Sperling S, Beyene Y (1997) A pound of biology and a pinch of culture or a pinch of biology and a pound of culture? The necessity of integrating biology and culture in reproductive studies. In: Hager L (ed) Women in human evolution. Routledge, New York, pp 137–152Google Scholar
  21. 21.
    Weaver DS (1998) Osteoporosis in the bioarchaeology of women. In: Grauer A, Stuart-Macadam P (eds) Sex and gender in paleopathological perspective. Cambridge, pp 27–46Google Scholar
  22. 22.
    Liebert MA, Snodgrass JJ, Blackwell AD, Madimenos FC, Sugiyama LS (2010) The implications of varying degrees of market integration on blood pressure, glucose, cholesterol, and triglyceride levels in an indigenous lowland Ecuadorian population. Am J Hum Biol 22:260Google Scholar
  23. 23.
    Anderson JJ, Pollitzer WS (1994) Ethnic and genetic differences in susceptibility to osteoporotic fractures. Adv Nutr Res 9:129–149PubMedGoogle Scholar
  24. 24.
    Hinkley HJ, Drysdale IP, Walters NJ, Bird D (2004) Normative data for ultrasound measurement of the calcaneus within different female ethnic groups. Br J Radiol 77:740–744PubMedCrossRefGoogle Scholar
  25. 25.
    Naganathan V, Macgregor A, Snieder H, Nguyen T, Spector T, Sambrook P (2002) Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res 17:725–733PubMedCrossRefGoogle Scholar
  26. 26.
    Thomas PA (2007) Racial and ethnic differences in osteoporosis. J Am Acad Orthop Surg 15(Suppl 1):S26–S30PubMedGoogle Scholar
  27. 27.
    Pluskiewicz W (1998) Bone status assessed by quantitative ultrasound in healthy postmenopausal Polish women: normative data. Clin Rheumatol 17:40–43PubMedCrossRefGoogle Scholar
  28. 28.
    Trovas G, Tsekoura M, Galanos A, Dionyssiotis Y, Dontas I, Lyritis G, Papioanou N (2009) Quantitative ultrasound of the calcaneus in Greek women: normative data are different from the manufacturer’s normal range. J Clin Densitol 12:353–359CrossRefGoogle Scholar
  29. 29.
    Takeda N, Miyake M, Kita S, Tomomitsu T, Fukunaga M (1996) Sex and age patterns of quantitative ultrasound densitometry of the calcaneus in normal Japanese subjects. Calcif Tissue Int 59:84–88PubMedCrossRefGoogle Scholar
  30. 30.
    Liu W, Xu CL, Zhu ZQ et al (2006) Characteristcs of calcaneus quantitative ultrasound normative data in Chinese mainland men and women. Osteoporos Int 17:1216–1224PubMedCrossRefGoogle Scholar
  31. 31.
    Skarić-Jurić T, Zajc M, Narancić NS, Barbalić M, Salihović MP, Lauc LB (2006) Calcaneous ultrasonographic assessment of bone mineral density in the Roma minority population of Croatia—preliminary report. Coll Antropol 30:761–765PubMedGoogle Scholar
  32. 32.
    Rhee Y, Lee J, Jung JY, Lee JE, Park SY, Kim YM, Lee S, Choi HS, Kim SH, Lim SK (2009) Modifications of T-scores by quantitative ultrasonography for the diagnosis of osteoporosis in Koreans. J Korean Med Sci 24:232–236PubMedCrossRefGoogle Scholar
  33. 33.
    Alenfeld FE, Engelke K, Schmidt D, Brezger M, Diessel E, Felsenberg D (2002) Diagnostic agreement of two calcaneal ultrasound devices: the Sahara bone sonometer and the Achilles. Br J Radiol 75:895–902PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  • Felicia C. Madimenos
    • 1
    • 2
  • J. Josh Snodgrass
    • 1
    • 2
  • Aaron D. Blackwell
    • 1
    • 2
    • 3
  • Melissa A. Liebert
    • 1
    • 2
  • Tara J. Cepon
    • 1
    • 2
  • Lawrence S. Sugiyama
    • 1
    • 2
    • 4
  1. 1.Department of AnthropologyUniversity of OregonEugeneUSA
  2. 2.Institute of Cognitive and Decision SciencesUniversity of OregonEugeneUSA
  3. 3.Department of Anthropology, Integrative Anthropological SciencesUniversity of CaliforniaSanta BarbaraUSA
  4. 4.Center for Evolutionary PsychologyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations