Advertisement

Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective

  • Ting-ting Luo
  • Yuan Lu
  • Shi-kai Yan
  • Xue Xiao
  • Xiang-lu Rong
  • Jiao GuoEmail author
Review
  • 30 Downloads

Abstract

Chinese medicine (CM) is usually prescribed as CM formula to treat disease. The lack of effective research approach makes it difficult to elucidate the molecular mechanisms of CM formula owing to its complicated chemical compounds. Network pharmacology is increasingly applied in CM formula research in recent years, which is identified suitable for the study of CM formula. In this review, we summarized the methodology of network pharmacology, including network construction, network analysis and network verification. The aim of constructing a network is to achieve the interaction between the bioactive compounds and targets and the interaction between various targets, and then find out and validate the key nodes via network analysis and network verification. Besides, we reviewed the application in CM formula research, mainly including targets discovery, bioactive compounds screening, toxicity evaluation, mechanism research and quality control research. Finally, we proposed prospective in the future and limitations of network pharmacology, expecting to provide new strategy and thinking on study for CM formula.

Keywords

network pharmacology Chinese medicine formula targets discovery mechanism research quality control research 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11655_2019_3064_MOESM1_ESM.pdf (149 kb)
Table 1. Database about CM Ingredient, Target, Pathway and Other Information
11655_2019_3064_MOESM2_ESM.pdf (96 kb)
Table 2. Some Typical Applications of Network Pharmacology in CM Formula

References

  1. 1.
    Xiao LJ, Tao R. Traditional Chinese medicine therapy. Adv Exp Med Biol 2017;1010:261–280.CrossRefPubMedGoogle Scholar
  2. 2.
    Xu W, Towers AD, Li P, et al. Traditional Chinese medicine in cancer care: perspectives and experiences of patients and professionals in China. Eur J Cancer Care (Engl) 2010;15:397–403.CrossRefGoogle Scholar
  3. 3.
    Sham TT, Chan CO, Wang YH, et al. A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. Biomed Res Int 2014;2014:925302.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tang C, Ye Y, Feng Y, et al. TCM, brain function and drug space. Nat Prod Rep 2015;33:6–25.CrossRefGoogle Scholar
  5. 5.
    Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001;109:69–75.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhou M, Hong Y, Lin X, et al. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. J Ethnopharmacol 2017;206:363–375.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee J, Park J, Park H, et al. Synergistic effect of Bupleuri Radix and Scutellariae Radix on adipogenesis and AMP-activated protein kinase: a network pharmacological approach. Evid Based Complement Alternat Med 2018;2018:5269731.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Y, Guo G, Yang BR, et al. Synergistic effects of Chuanxiong-Chishao herb-pair on promoting angiogenesis at network pharmacological and pharmacodynamic levels. Chin J Integr Med 2017;23:654–662.CrossRefPubMedGoogle Scholar
  9. 9.
    Ye HZ, Zheng CS, Xu XJ, et al. Potential synergistic and multitarget effect of herbal pair Chuanxiong Rhizome-Paeonia Albifora Pall on osteoarthritis disease: a computational pharmacology approach. Chin J Integr Med 2011;17:698–703.CrossRefPubMedGoogle Scholar
  10. 10.
    Lu GY, Huang QX. Study of the research and development of innovative drugs of Chinese medicine. Chin J Exp Tradit Med Form (Chin) 2014;20:232–234.Google Scholar
  11. 11.
    Zhao J, Zhang WD. Advances in research on multi-target and multicomponent drugs based on system biology. Chin Pharm J (Chin) 2010;45:1121–1126.Google Scholar
  12. 12.
    Liang LZ, Li GX, Yu XF, et al. Path of Chinese material drug innovation and exploratory clinical trials. Liaoning J Tradit Chin Med (Chin) 2016;43:1382–1384.Google Scholar
  13. 13.
    Yang W, Zhang Y, Wu W, et al. Approaches to establish Q-markers for the quality standards of Chinese medicines. Acta Pharm Sin B 2017;7:439–446.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu X, Wu WY, Jiang BH, et al. Pharmacological tools for the development of Chinese medicine. Trends Pharm Sci 2013;34:620–628.CrossRefPubMedGoogle Scholar
  15. 15.
    Li S. Mapping ancient remedies: applying a network approach to traditional Chinese medicine. Science 2015;350 (6262 Suppl):S72–S74.CrossRefGoogle Scholar
  16. 16.
    Yuan B. How do precision medicine and system biology response to human body’s complex adaptability. Chin J Integr Med 2016;22:883–888.CrossRefPubMedGoogle Scholar
  17. 17.
    Yan SK, Liu RH, Jin HZ, et al. “Omics” in pharmaceutical research: overview, applications, challenges, and future perspectives. Chin J Nat Med 2015;13:3–21.PubMedGoogle Scholar
  18. 18.
    Hopkins AL. Network pharmacology. Nature Biotechnol 2007;25:1110–1111.CrossRefGoogle Scholar
  19. 19.
    Li S. Exploring traditional Chinese medicine by a novel therapeutic concept of network target. Chin J Integr Med 2016;22:1–6.Google Scholar
  20. 20.
    Yu G, Wang J. Exploring mechanisms of Panax notoginseng saponins in treating coronary heart disease by integrating gene interaction network and functional enrichment analysis. Chin J Integr Med 2016;22:589–596.CrossRefPubMedGoogle Scholar
  21. 21.
    Li S. Possible relationship between traditional Chinese medicine Zheng and molecular networks. Science and technology progress and social and economic development for the 21st century. Volume 1. China Science and Technology Association, Zhejiang Provincial People’s Government: Academic Department of China Association of Science and Technology Association;1999:1.Google Scholar
  22. 22.
    Li S. Network target: a breakthrough point in the study of network pharmacology of TCM prescription. J Tradit Chin Med 2011;36:2017–2020.Google Scholar
  23. 23.
    Li S, Zhang B, Zhang N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol 2011;5:1–13.CrossRefGoogle Scholar
  24. 24.
    Li S, Zhang B. TCM network pharmacology: theory, methodology and application. Chin J Nat Med 2013;11:110–120.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012;52:505–521.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yuan H, Ma Q, Cui H, et al. How can synergism of traditional Medicines benefit from network pharmacology? Molecules 2017;22:1135–1154.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wang W, Yang S, Zhang X, et al. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 2014;30:2923–2930.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Suo T, Liu J, Chen X, et al. Combining chemical profiling and network analysis to investigate the pharmacology of complex prescriptions in traditional Chinese medicine. Sci Rep 2017;7:40529.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li J, Lu C, Jiang M, et al. TCM-based network pharmacology could lead to new multi-compound drug discovery. Evid Based Complement Alternat Med 2012;4:2012.Google Scholar
  30. 30.
    Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26.CrossRefPubMedGoogle Scholar
  31. 31.
    He XY, Liu QC, Peng W, et al. Bioactivities and serum pharmacochemistry of Qi-Wei-Xiao-Yan-Tang. Pharm Biol 2013;51:629–634.CrossRefPubMedGoogle Scholar
  32. 32.
    Niu XW, Zhang JJ, Ni JR, et al. Network pharmacology-based identification of major component of and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 2018;38 pii:BSR20180519.Google Scholar
  33. 33.
    Yang Y, Yang K, Hao T, et al. Prediction of molecular mechanisms for Lianxia Ningxin Formula: a network pharmacology study. Front Physiol 2018;9:489.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010;38:609–614.CrossRefGoogle Scholar
  35. 35.
    Gao L, Wang XD, Niu YY, et al. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci Rep 2016;6:24944.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brouwers L, Iskar M, Zeller G, et al. Network Neighbors of Drug Targets Contribute to Drug Side-Effect Similarity. Plos One 2011;6:e22187.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xue XC, Hu JH. Research methods and applications in network pharmacology. J Pharmac Pract (Chin) 2015;7:496–501.Google Scholar
  38. 38.
    Kwoha CK, Nga PY. Network analysis approach for biology. Cell Mol Life Sci 2007;64:1739–1751.CrossRefGoogle Scholar
  39. 39.
    Hasan S, Bonde BK, Buchan NS, et al. Network analysis has diverse roles in drug discovery. Drug Discov Today 2012;17:869–874.CrossRefPubMedGoogle Scholar
  40. 40.
    Wu LH, Wang Y, Fan XH. Network pharmacology technology tools: network visualization and network analysis. Chin J Tradit Chin Med (Chin) 2011;36:2923–2925.Google Scholar
  41. 41.
    Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4:682–690.CrossRefPubMedGoogle Scholar
  42. 42.
    Alkan F, Erten C. RedNemo: topology-based PPI network reconstruction via repeated diffusion with neighborhood modifications. Bioinformatics 2017;33:537–544.PubMedGoogle Scholar
  43. 43.
    Hofman JM, Wiggins CH. Bayesian approach to network modularity. Phys Rev Lett 2008;100:258701.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou WX, Wang TX, Cheng XR, et al. Network analysis technology in network pharmacology. J Int Pharm Res (Chin) 2016;43:797–812.Google Scholar
  45. 45.
    Fletcher RJ, Revell A, Reichert BE, et al. Network modularity reveals critical scales for connectivity in ecology and evolution. Nat Commun 2013;4:2572.CrossRefPubMedGoogle Scholar
  46. 46.
    Godwin D, Barry RL, Marois R. Breakdown of the brain’s functional network modularity with awareness. Proc Natl Acad Sci U S A 2015;112:3799–3804.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Donatti CI, Guimarães PR, Galetti M, et al. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 2011;14:773–781.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhao S, Li S. A co-module approach for elucidating drug-disease associations and revealing their molecular basis. Bioinformatics 2012;28:955–961.CrossRefPubMedGoogle Scholar
  49. 49.
    Feng CL, Gu YM, Qin Y, et al. Biological network analysis algorithm based on module decomposition and its application. Chin Tradit Patent Med (Chin) 2016;38:2227–2232.Google Scholar
  50. 50.
    Borsboom D, Cramer AO. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol 2013;9:91–121.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang C, Jiang W, Li W, et al. Topological properties of the drug targets regulated by microRNA in human protein-protein interaction network. J Drug Target 2011;19:354–364.CrossRefPubMedGoogle Scholar
  52. 52.
    Serin F, Erturkler M, Gul M. A novel overlapped nuclei splitting algorithm for histopathological images. Comput Methods Programs Biomed 2017;151:57–70.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen Z, Ness JWV. Space-conserving agglomerative algo-rithms. J Classific 1996;13:157–168.CrossRefGoogle Scholar
  54. 54.
    King AD, Przulj N, Jurisica I. Protein complex prediction viacost-based clustering. Bioinformatics 2004;20:3013–3020.CrossRefPubMedGoogle Scholar
  55. 55.
    Palla G, Derényi I, Farkas I, et al. Uncovering the overlap-ping community structure of complex networks in nature and society. Nature 2005;435:814–818.CrossRefPubMedGoogle Scholar
  56. 56.
    Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003;4:2.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kang JK, Hong HG, Park KR. Pedestrian detection based on adaptive selection of visible light or far-infrared light camera image by fuzzy inference system and convolutional neural network-based verification. Sensors 2017;17:E1598.CrossRefPubMedGoogle Scholar
  58. 58.
    Guo Q, Zheng K, Fan D, et al. Wu-Tou Decoction in rheumatoid arthritis: integrating network pharmacology and in vivo pharmacological evaluation. Front Pharmacol 2017;8:230.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wu YS, Chen YT, Bao YT, et al. Identification and verification of potential therapeutic target genes in berberine-treated zucker diabetic fatty rats through bioinformatics analysis. PLoS One 2016;11:e0166378.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li W, Yuan G, Pan Y, et al. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol 2017;8:74.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang X, Pi Z, Zheng Z, et al. Comprehensive investigation of in-vivo ingredients and action mechanism of iridoid extract from Gardeniae Fructus by liquid chromatography combined with mass spectrometry, microdialysis sampling and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2018;1076:70–76.CrossRefPubMedGoogle Scholar
  62. 62.
    Poornima P, Kumar JD, Zhao Q, et al. Network pharmacology of cancer: from understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res 2016;111:290–302.CrossRefPubMedGoogle Scholar
  63. 63.
    Hao P, Fan J, Jing C, et al. TCM for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol 2017;69:2952–2966.CrossRefPubMedGoogle Scholar
  64. 64.
    Yang HQ. Li XJ. Chemical proteomics and discovery of drug target. Acta Pharmac Sinica 2011;46:877–882.Google Scholar
  65. 65.
    Parker CG, Galmozzi A, Wang Y, et al. Ligand and target discovery by fragment-based screening in human cells. Cell 2017;168:527–541.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM pharmacology. Brief Bioinform 2010;11:417–430.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang Y, Mao X, Su J, et al. A network pharmacology-based strategy deciphers the underlying molecular mechanisms of Qixuehe Capsule in the treatment of menstrual disorders. Chin Med 2017;12:23.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang N, Zhao G, Zhang Y. A network pharmacology approach to determine the active components and potential targets of Curculigo Orchioidesin the treatment of osteoporosis. Med Sci Monit 2017;23:5113–5122.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhang AH, Sun H, Han Y, et al. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets. Anal Chem 2013;85:7606–7612.CrossRefPubMedGoogle Scholar
  70. 70.
    Jing Z, Peng J, Zhang W. Molecular networks for the study of TCM pharmacology. Brief Bioinf 2010;11:417–430.CrossRefGoogle Scholar
  71. 71.
    Hong M, Li S, Wang N, et al. A biomedical investigation of the hepatoprotective effect of Radix salviae miltiorrhizae and network pharmacology-based prediction of the active compounds and molecular targets. Int J Mol Sci 2017;18:620.CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Li X. Wu LH, Fan XH, et al. Study based on network pharmacology on main active ingredients of Danshen Formula. China J Chin Mater Med (Chin) 2011;36:2911–2915.Google Scholar
  73. 73.
    Wang L, Li Z, Shao Q, et al. Dissecting active ingredients of Chinese medicine by content-weighted ingredient-target network. Mol Biosyst 2014;10:1905–1911.CrossRefPubMedGoogle Scholar
  74. 74.
    Liang J, Chen Y, Ren G, et al. Screening hepatotoxic components in Euodia rutaecarpa by UHPLC-QTOF/MS based on the spectrum-toxicity relationship. Molecules 2017;22:1264.CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tardiff RG. In vitro methods of toxicity evaluation. Annu Rev Pharmacol Toxicol 1978;18:357–369.CrossRefPubMedGoogle Scholar
  76. 76.
    Yang YF, Lin YJ, Liao CM. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans. Int J Nanomed 2017;12:4607–4621.CrossRefGoogle Scholar
  77. 77.
    Li ZY, Bao HJ, Zhang SF, et al. Study on intersection and regulation mechanism of “efficacy-toxicity network” of aconite in combination environment of Sini Decoction. China J Chin Mater Med (Chin) 2015;40:733–738.Google Scholar
  78. 78.
    Wang J, Li Y, Yang Y, et al. Systems pharmacology dissection of multi-scale mechanisms of action for herbal medicines in treating rheumatoid arthritis. Mole Pharm 2017;14:3201–3217.CrossRefGoogle Scholar
  79. 79.
    Shi SH, Cai YP, Cai XJ, et al. A network pharmacology approach to understanding the mechanisms of action of traditional medicine: Bushenhuoxue Formula for treatment of chronic kidney disease. PLoS One 2014;9:e89123.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhou W, Cheng X, Zhang Y. Effect of Liuwei Dihuang Decoction, a traditional Chinese medicinal prescription, on the neuroendocrine immunomodulation network. Pharmacol Ther 2016;162:170–178.CrossRefPubMedGoogle Scholar
  81. 81.
    Zeng L, Yang K. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach. J Ethnopharmacol 2017;199:68–85.CrossRefPubMedGoogle Scholar
  82. 82.
    Ding G, Li B, Han Y, et al. A rapid integrated bioactivity evaluation system based on near-infrared spectroscopy for quality control of Flos Chrysanthemi. J Pharm Biomed Anal 2016;131:391–399.CrossRefPubMedGoogle Scholar
  83. 83.
    Liu CX, Cheng YY, Guo DA, et al. A new concept on quality marker for quality assessment and process control of Chinese medicines. Chin Herb Med 2017;9:3–13.CrossRefGoogle Scholar
  84. 84.
    Xiang W, Suo TC, Yu H, et al. A new strategy for choosing “Q-markers” via network pharmacology, application to the quality control of a Chinese medical preparation. J Food Drug Anal 2018;26:858–868.CrossRefPubMedGoogle Scholar
  85. 85.
    Zhang B, Wang X, Li S. An integrative platform of TCM network pharmacology and its application on a herbal formula, Qing-Luo-Yin. Evid Based Complement Alternat Med 2013;2013:456747.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Fang HY, Zeng HW, Lin LM, et al. A network-based method for mechanistic investigation of Shexiang Baoxin Pill’s treatment of cardiovascular diseases. Sci Rep 2017;7:43632.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Su ZH, Jia HM, Zhang HW, et al. Hippocampus and serum metabolomic studies to explore the regulation of Chaihu-Shu-Gan-San on metabolic network disturbances of rats exposed to chronic variable stress. Mol Biosyst 2014;10:549–561.CrossRefPubMedGoogle Scholar
  88. 88.
    Chen L, Du J, Dai Q, et al. Prediction of anti-tumor chemical probes of a TCM formula by HPLC fingerprinting combined with molecular docking. Eur J Med Chem 2014;83:294–306.CrossRefPubMedGoogle Scholar
  89. 89.
    Hou Y, Yan N, Cheng B, et al. Qingfei Xiaoyan Wan, a TCM formula, ameliorates Pseudomonas aeruginosa-induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways. Acta Pharm Sin B 2016;6:212–221.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Liang X, Li H, Li S. A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang Pill as a case study. Mol Biosyst 2014;10:1014–1022.CrossRefPubMedGoogle Scholar
  91. 91.
    Zhao F, Li G, Yang Y, et al. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout. J Ethnopharmacol 2015;168:1–16.CrossRefPubMedGoogle Scholar
  92. 92.
    Chen M, Yang F, Yang X, et al. Systematic understanding of mechanisms of a Chinese herbal formula in treatment of metabolic syndrome by an integrated pharmacology approach. Int J Mol Sci 2016;17:E2114.CrossRefPubMedGoogle Scholar
  93. 93.
    Shen P, Shen J, Sun C, et al. A system biology approach to understanding the molecular mechanisms of Gubentongluo Decoction acting on IgA nephropathy. BMC Complement Alternat Med 2016;16:312–322.CrossRefGoogle Scholar
  94. 94.
    Fang H, Wang Y, Yang T, et al. Bioinformatics analysis for the antirheumatic effects of Huang-lian-jie-du-tang from a network perspective. Evid Based Complement Alternat Med 2013;2013:245357.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Yao Y, Zhang X, Wang Z, et al. Deciphering the combination principles of TCM from a systems pharmacology perspective based on Ma-huang Decoction. J Ethnopharmacol 2013;150:619–638.CrossRefPubMedGoogle Scholar
  96. 96.
    Huang L, Lv Q, Xie D, et al. Deciphering the potential pharmaceutical mechanism of Chinese traditional medicine (Gui-Zhi-Shao-Yao-Zhi-Mu) on rheumatoid arthritis. Sci Rep 2016;6:22602.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Yang ZZ, Liu W, Zhang F, et al. Deciphering the therapeutic mechanisms of Xiao-Ke-An in treatment of type 2 diabetes in mice by a Fangjiomics approach. Acta Pharmacol Sin 2015;36:699–707.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Fang Z, Lu B, Liu M, et al. Evaluating the pharmacological mechanism of Chinese medicine Si-Wu-Tang through multi-level data integration. PLoS One 2013;8:e72334.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    An L, Feng F. Network pharmacology-based antioxidant effect study of Zhi-Zi-Da-Huang Decoction for alcoholic liver disease. Evid Based Complement Alternat Med 2015;2015:492470.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Xu T, Li S, Sun Y, et al. Systematically characterize the absorbed effective substances of Wutou Decoction and their metabolic pathways in rat plasma using UHPLC-Q-TOF-MS combined with a target network pharmacological analysis. J Pharm Biomed Anal 2017;141:95–107.CrossRefPubMedGoogle Scholar
  101. 101.
    Zeng L, Yang K, Liu H, et al. A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids. Exp Ther Med 2017;14:4697–4710.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Pang XC, Kang, Fang JS, et al. Network pharmacology-based analysis of Chinese herbal Naodesheng Formula for application to Alzheimer’s disease. Chin J Nat Med 2018;16:53–62.PubMedGoogle Scholar
  103. 103.
    Li S, Wang N, Hong M, et al. Hepatoprotective effects of a functional formula of three Chinese medicinal herbs: experimental evidence and network pharmacology-based identification of mechanism of action and potential bioactive components. Molecules 2018;23:352–368.CrossRefPubMedCentralGoogle Scholar
  104. 104.
    Shu Z, He W, Shahen M, et al. Clarifying of the potential mechanism of Sinisan Formula for treatment of chronic hepatitis by systems pharmacology method. Biomed Pharmacother 2018;100:532–550.CrossRefPubMedGoogle Scholar

Copyright information

© The Chinese Journal of Integrated Traditional and Western Medicine Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ting-ting Luo
    • 1
    • 2
  • Yuan Lu
    • 1
    • 2
  • Shi-kai Yan
    • 3
  • Xue Xiao
    • 1
    • 2
  • Xiang-lu Rong
    • 1
    • 2
  • Jiao Guo
    • 1
    • 2
    Email author
  1. 1.Institute of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
  2. 2.Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina
  3. 3.School of PharmacyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations