Chinese Journal of Integrative Medicine

, Volume 23, Issue 11, pp 837–844 | Cite as

Electro-acupuncture treatment for internet addiction: Evidence of normalization of impulse control disorder in adolescents

  • Yang Yang
  • Hui Li
  • Xi-xi Chen
  • Luo-ming Zhang
  • Bing-jie Huang
  • Tian-min Zhu
Original Article

Abstract

Objective

To observe the impacts of electro-acupuncture (EA) and psychological intervention (PI) on impulsive behavior among internet addiction (IA) adolescents.

Methods

Thirty-two IA adolescents were allocated to either EA (16 cases) or PI (16 cases) group by a randomized digital table. Subjects in the EA group received EA treatment and subjects in the PI group received cognition and behavior therapy. All adolescents underwent 45-d intervention. Sixteen healthy volunteers were recruited into a control group. Barratt Impulsiveness Scale (BIS-11) scores, Young's Internet Addiction Test (IAT) as well as the ratio of brain N-acetyl aspartate (NAA) to creatine (NAA/Cr) and choline (Cho) to creatine (Cho/Cr) were recorded by magnetic resonance spectroscopy before and after intervention respectively.

Results

The IAT scores and BIS-11 total scores in both EA and PI group were remarkably decreased after treatment (P<0.05), while EA group showed more significant decrease in certain BIS-11 sub-factors (P<0.05). Both NAA/Cr and Cho/Cr were significantly improved in EA group after treatment (P<0.05); however, there were no significant changes of NAA/Cr or Cho/Cr in PI group after treatment (P>0.05).

Conclusions

Both EA and PI had significantly positive effect on IA adolescents, especially in the aspects of psychological experiences and behavioral expressions, EA might have an advantage over PI in terms of impulsivity control and brain neuron protection. The mechanism underlying this advantage might be related to the increased NAA and Cho levels in prefrontal and anterior cingulate cortices.

Keywords

internet addiction electro-acupuncture Barratt Impulsiveness Scale magnetic resonance spectroscopy impulse behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors would like to acknowledge the support of Prof. JIN Rong-jiang in participants recruitment, Mr. WU Qin-zhu for his excellent technical assistance and Dr. ZHOU Zhang-yi in the conduction of cognitive behavior therapy.

References

  1. 1.
    Young KS. Internet addiction: the emergence of a new clinical disorder. Cyberpsychol Behav 1996;1:237–244.CrossRefGoogle Scholar
  2. 2.
    Byun S, Ruffini C, Mills JE, Douglas AC, Niang M, Stepchenkova S, et al. Internet addiction: metasynthesis of 1996–2006 quantitative research. Cyberpsychol Behav 2009;12:203–207.CrossRefPubMedGoogle Scholar
  3. 3.
    Shi JG, ed. Addiction medicine. Beijing: Science Press; 2002:332.Google Scholar
  4. 4.
    China Internet Network Information Center. The 33rd report of internet network development. Available at http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/ t20140305_46240.htm. Accessed January 16, 2014.Google Scholar
  5. 5.
    Bae H, Han C, Kim D. Desensitization of triggers and urge reprocessing for pathological gambling: a case series. J Gambl Stud 2015;31:331–342.CrossRefPubMedGoogle Scholar
  6. 6.
    Warberg L, Thomsen M, Moll B, Thomasius R. Pilot study on the effectiveness of a cognitive behavioural group programme for adolescents with pathological internet use. Prax Kinderpsychol Kinderpsychiatr 2014;63:21–35.CrossRefGoogle Scholar
  7. 7.
    Grant JE, Potenza MN, Weinstein A, Gorelick DA. Introduction to behavioral addictions. Am J Drug Alcohol Abuse 2010;36:233–241.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dowling NA, Brown M. Commonalities in the psychological factors associated with problem gambling and Internet dependence. Cyberpsychol Behav Soc Netw 2010;13:437–441.CrossRefPubMedGoogle Scholar
  9. 9.
    Ko CH, Liu GC, Hsiao S, Yen JY, Yang MJ, Lin WC, et al. Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res 2009;43:739–747.CrossRefPubMedGoogle Scholar
  10. 10.
    Cao FL, ed. Mechanism of psychology, functional imageology and group psychological intervention in adolescents with internet addiction. Changsha: Central South University Press; 2007:33–35.Google Scholar
  11. 11.
    Han DH, Lee YS, Shi X, Renshaw PF. Proton magnetic resonance spectroscopy (MRS) in on-line game addiction. J Psychiatr Res 2014;58:63–68.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pang Y. Treatment of traditional Chinese medicine combined with Western medicine for internet addiction syndrome in youth. Mod J Integr Tradit Chin West Med (Chin) 2009;18:362–363.Google Scholar
  13. 13.
    Wu LZ, Yan JJ, Han JS. Treatment on 27 adolescents with internet addiction by 2/100 Hz Han's acupoint nerve stimulator (HANS). Chin J Drug Depend (Chin) 2007;16:32–35.Google Scholar
  14. 14.
    Zhang GF, Su PZ, Liu YY, Ma H, Ou WX. Acupuncture combined in youngsters with internet addiction disorder clinical study. Chin J Ethnomed Ethnopharm (Chin) 2010;15:29–30.Google Scholar
  15. 15.
    Su PZ, Zhang GF, Liu YY, Qu WX. Acupuncture combined with cognitive behavior therapy for depression in youngsters with internet addiction disorder: clinical study. Liaoning J Tradit Chin Med (Chin) 2011;38:532–535.Google Scholar
  16. 16.
    Zhu TM, Jin RJ, Zhong XM, Chen J, Li H. Effects of electroacupuncture combined with psychologic interference on anxiety state and serum NE content in the patients with internet addiction disorder. Chin Acupunct Moxibust (Chin) 2008;28:561–564.Google Scholar
  17. 17.
    Beard KW, Wolf EM. Modification in the proposed diagnostic criteria for internet addiction. Cyberpsychol Behav 2001;4:377–383.CrossRefPubMedGoogle Scholar
  18. 18.
    Deng LY, Liu L, Xia CC, Lan J, Zhang JT, Fang XY. Craving behavior intervention in ameliorating college students' internet game disorder: a longitudinal study. Front Psychol 2017;8:526.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chun J, Shim H, Kim S. A meta-analysis of treatment interventions for Internet addiction among Korean adolescents. Cyberpsychol Behav Soc Netw 2017;4:225–231.CrossRefGoogle Scholar
  20. 20.
    Young KS, de Abreu CN, eds. Clinical assessment of internet-addicted Clients. In: Young KS, ed. Internet Addiction. Hoboken: John Wiley and Sons Inc, 2011:19–34.Google Scholar
  21. 21.
    Li Y, Zhong BL, Liu XB, Zhang Y, Zhu JH, Hao W. Reliability and validity of the Chinese version of self-rating young's diagnostic questionnaire of internet addiction: a preliminary study. Chin J Drug Depend (Chin) 2012;21:390–394.Google Scholar
  22. 22.
    MacKillop J, Weafer J, C Gray J, Oshri A, Palmer A, de Wit H. The latent structure of impulsivity: impulsivechoice, impulsive action, and impulsive personality traits. Psychopharm (Berl) 2016;233:3361–3370.CrossRefGoogle Scholar
  23. 23.
    Zhou L, Xiao SY, He XY, Li J, Liu HM. Reliability and validity of Chinese version of Barratt Impulsiveness Scale-11. Chin J Clin Psycho (Chin) 2006;14:343–345.Google Scholar
  24. 24.
    Yao S, Yang H, Zhu X, Auerbach RP, Abela JR, Pulleyblank RW, et al. An examination of the psychometric properties of the Chinese version of the Barratt Impulsiveness Scale, 11th version in a sample of Chinese adolescents. Percept Mot Skills 2007;104:1169–1182.CrossRefPubMedGoogle Scholar
  25. 25.
    Li XY, Fei LP, Xu D, Zhang YL, Yang SJ, Tong YS, et al. Reliability and validity of an adapted Chinese version of Barratt Impulsive Scale. Chin Mental Health J (Chin) 2011;25:610–615.Google Scholar
  26. 26.
    Lai XS, Huang Y, Tang AW, Tang CZ, Yang JJ, Li DJ, et al. Effect of acupuncture on Baihui acupoint on brain tomography under pathological condition. J Guangzhou Univ Tradl Chin Med (Chin) 2008;25:410–413.Google Scholar
  27. 27.
    Zhao LG, Ma L. Effect of acupuncture of "Baihui" (GV20) and "Sishencong" (EX-HN1) on memory and cerebral SOD activity in Alzheimer's disease rats. Acupunct Res (Chin) 2005;30:26–29.Google Scholar
  28. 28.
    Fu P, Jia JP, Zhu J, Huang JJ. Effects of acupuncture at Neiguan (PC6) on human brain functional imaging in different functional states. Chin Acupunct Moxibust (Chin) 2005;25:784–786.Google Scholar
  29. 29.
    Li WW, Xu GZ, Chen XG, Yang S, Yu HL. The analysis of EEG source localization under magnetic stimulation at acupoint of Neiguan (PC6). Chin J Biomed Engin (Chin) 2011;30:22–26.Google Scholar
  30. 30.
    Chen WJ, Shou YQ, Li JH, Xu ZS, Liu H. The effect of acupuncture at the acupoint Sanyinjiao on brain function as revealed by the functional magnetic resonance imaging. Chin J Phys Med Rehabilit (Chin) 2007; 29:774–779.Google Scholar
  31. 31.
    Mei JR, ed. Neuropsychology. Beijing: China Renmin University Press; 2011:202.Google Scholar
  32. 32.
    Xu JY, Wang FQ, Wang H, Shan BC, Li J. Control study on effects of acupuncture at Hegu (L14) and Taichong (LR3) points on fMRI cerebral function imaging. Chin Acupunct Moxibust (Chin) 2004;24:263–265.Google Scholar
  33. 33.
    Ludger TE, Thorsten T, Bernd H, Klaus L, Martin B, Hennig J, et al. Subtle prefrontal neuropathology in a pilot magnetic resonance spectroscopy study in patients with boardline personality disorder. J Neuropsychiat Clin Neurosci 2001;13:511–514.CrossRefGoogle Scholar
  34. 34.
    Stemmer B, Segalowitz SJ, Witzke W, Schönle PW. Error detection in patients with lesions to the medial prefrontal cortex: An ERP study. Neuropsychologia 2004;42:118–130.CrossRefPubMedGoogle Scholar
  35. 35.
    Robinson TE, Berridge KC. Addiction. Annu Rev Psychol 2003;54:25–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000;4:215–222.CrossRefPubMedGoogle Scholar
  37. 37.
    Braver TS, Barch DM, Gray JR, Molfese DL, Synder A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb Cortes 2001;11:825–836.CrossRefGoogle Scholar
  38. 38.
    Badre D, Wagner AD. Selection, integration and conflict monitoring: assessing the nature and generality of prefrontal cognitive control mechanism. Neuron 2004;41:473–487.CrossRefPubMedGoogle Scholar
  39. 39.
    Zetzsche T, Preuss U, Frodl T, Watz D, Schmitt G, Koutsouleris N, et al. In-vivo topography of structural alterations of the anterior cingulate in patients with schizophrenia: new findings and comparison with the literature. Schizophr Res 2007;96:34–45.CrossRefPubMedGoogle Scholar
  40. 40.
    Hajek T, Kozeny J, Kopecek M, Alda M, Höschl C. Reduced subgenual cingulate volumes in mood disorders: a metaanalysis. J Psychiatry Neurosci 2008;33:91–99.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rotge JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, et al. Meta-analysis of brain volume changes in obsessivecompulsive disorder. Biol Psychiatry 2009;65:75–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee TM, Zhou WH, Luo XJ, Yuen KS, Ruan XZ, Weng XC. Neural activity associated with cognitive regulation in heroin users: a fMRI study. Neurosci Lett 2005;382:211–216.CrossRefPubMedGoogle Scholar
  43. 43.
    Kreek MJ, Nielsen DA, Butelman ER, LaForge KS. Genetic influences on impulsivity, risk-taking stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 2005;8:1450–1457.CrossRefPubMedGoogle Scholar
  44. 44.
    Lawrence AJ, Luty J, Bogdan NA, Sahakian BJ, Clark L. Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacol (Berl) 2009;207:163–172.CrossRefGoogle Scholar
  45. 45.
    Horn NR, Dolana M, Elliotta R, Deakin JFW, Woodruff PWR. Response inhibition and impulsivity: an fMRI study. Neuropsychologia 2003;41:1959–1966.CrossRefPubMedGoogle Scholar
  46. 46.
    Danielsen ER, Rose B, eds. Magnetic resonance spectroscopy diagnosis of neurological diseases. New York: Marcel Dekker; 1999:344.Google Scholar
  47. 47.
    Rudkin TM, Arnold DL. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 1999;56:919–926.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu YO, Xu Q, Li KC. The application of N-acetyl-aspartate detection by brain MRS in central nervous system diseases. J Clin Radio (Chin) 2010;29:1136–1138.Google Scholar
  49. 49.
    Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989;13:23–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Arnold DL, de Stefano N, Matthews PM, Trapp BD. N-acetylaspartate: usefulness as an indicator of viable neuronal tissue. Ann Neurol 2001;50:823–825.CrossRefPubMedGoogle Scholar
  51. 51.
    Brandao LA, Domingues RC, eds. MR spectroscopy of the Brain. Livraria e Editora Revinter Ltda authorized, Tianjin: Tianjin Science and Technology Translation and Publishing Co. Ltd. 2005:192.Google Scholar
  52. 52.
    English BA, Hahn MK, Gizer IR, Mazei-Robison M, Steele A, Kurnik DM, et al. Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. J Neurodev Disord 2009;1:252–263.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chudasama Y, Dalley JW, Nathwani F, Bouger P, Robbins TW. Effects of basal forebrain 192-IgG-saporin lesions and intraprefrontal infusions of scopolamine. Learn Mem 2004;11:78–86.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yang Yang
    • 1
  • Hui Li
    • 2
  • Xi-xi Chen
    • 1
  • Luo-ming Zhang
    • 1
  • Bing-jie Huang
    • 1
  • Tian-min Zhu
    • 1
  1. 1.School of Rehabilitation and Health PreservationChengdu University of Traditional Chinese MedicineChengduChina
  2. 2.School of MedicineChengdu UniversityChengduChina

Personalised recommendations