best practice onkologie

, Volume 8, Issue 3, pp 20–27

Lungenkarzinom

Molekulare Pathologie und personalisierte Therapie
Topic

Die Tumorimmuntherapie hat in den letzten Jahren rasante Fortschritte gemacht. So lieferten Studien zur Behandlung des Bronchialkarzinoms mit "cancer vaccines" wie dem melanomassoziierten Antigen A3 (MAGE-A3) und liposomalem BLP25 vielversprechende Ergebnisse in den Stadien IB/II und III des nichtkleinzelligen Bronchialkarzinoms. Immunmodulatorische Agenzien wie Talactoferrin oder Ipilimumab scheinen v. a. in Verbindung mit einer platinbasierten Chemotherapie zu wirken, was andeutet, dass insbesondere die Kombination von Immuntherapeutika, konventioneller Chemotherapie und tumorspezifischen, zielgerichteten Agenzien das größte therapeutische Zukunftspotenzial besitzt. Das genaue Verständnis der Interaktion zwischen Tumor und Immunsystem bleibt essenziell für die Identifizierung potenzieller Biomarker. Im Idealfall ermöglicht es auch im Bereich der Immuntherapie die Entwicklung gezielter Ansätze.

Literatur

  1. [1]
    Macconaill LE (2012) Advancing personalized cancer medicine in lung cancer. Arch Pathol Lab Med 136:1210–1216PubMedCrossRefGoogle Scholar
  2. [2]
    Molina JR et al (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594PubMedGoogle Scholar
  3. [3]
    Schiller JH et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98PubMedCrossRefGoogle Scholar
  4. [4]
    Sandler A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550PubMedCrossRefGoogle Scholar
  5. [5]
    Shepherd FA et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132PubMedCrossRefGoogle Scholar
  6. [6]
    Mok TS et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957PubMedCrossRefGoogle Scholar
  7. [7]
    Rosell R et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967PubMedCrossRefGoogle Scholar
  8. [8]
    Kwak EL et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703PubMedCrossRefGoogle Scholar
  9. [9]
    Sequist LV et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26PubMedCrossRefGoogle Scholar
  10. [10]
    Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836PubMedCrossRefGoogle Scholar
  11. [11]
    Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704–2715PubMedCrossRefGoogle Scholar
  12. [12]
    Murala S et al (2010) Current status of immunotherapy for the treatment of lung cancer. J Thorac Dis 2:237–244PubMedGoogle Scholar
  13. [13]
    Thomas A, Hassan R (2012) Immunotherapies for non-small-cell lung cancer and mesothelioma. Lancet Oncol 13:e301–e310PubMedCrossRefGoogle Scholar
  14. [14]
    Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171PubMedCrossRefGoogle Scholar
  15. [15]
    Reck M (2012) What future opportunities may immuno-oncology provide for improving the treatment of patients with lung cancer? Ann Oncol 23 (Suppl 8):viii28–viii34PubMedCrossRefGoogle Scholar
  16. [16]
    Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedCrossRefGoogle Scholar
  17. [17]
    Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedCrossRefGoogle Scholar
  18. [18]
    Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212Google Scholar
  19. [19]
    Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1:220–228Google Scholar
  20. [20]
    Spadaro M et al (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22:2747–2757PubMedCrossRefGoogle Scholar
  21. [21]
    Digumarti R et al (2011) A randomized, double-blind, placebo-controlled, phase II study of oral talactoferrin in combination with carboplatin and paclitaxel in previously untreated locally advanced or metastatic non-small cell lung cancer. J Thorac Oncol 6:1098–1103PubMedCrossRefGoogle Scholar
  22. [22]
    Hayes TG et al (2006) Phase I trial of oral talactoferrin alfa in refractory solid tumors. Invest New Drugs 24:233–240PubMedCrossRefGoogle Scholar
  23. [23]
    Parikh PM et al (2011) Randomized, double-blind, placebo-controlled phase II study of single-agent oral talactoferrin in patients with locally advanced or metastatic non-small-cell lung cancer that progressed after chemotherapy. J Clin Oncol 29:4129–4136PubMedCrossRefGoogle Scholar
  24. [24]
    Butts C et al (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23:6674–6681PubMedCrossRefGoogle Scholar
  25. [25]
    Nemunaitis J et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24:4721–4730PubMedCrossRefGoogle Scholar
  26. [26]
    Nemunaitis J et al (2009) Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 16:620–624PubMedCrossRefGoogle Scholar
  27. [27]
    Kong F et al (1999) Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86:1712–1719PubMedCrossRefGoogle Scholar
  28. [28]
    Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100:2014–2021PubMedCrossRefGoogle Scholar
  29. [29]
    Bolli M et al (2002) Tissue microarray evaluation of Melanoma antigen E (MAGE) tumor-associated antigen expression: potential indications for specific immunotherapy and prognostic relevance in squamous cell lung carcinoma. Ann Surg 236:785–793PubMedCrossRefGoogle Scholar
  30. [30]
    Atanackovic D et al (2008) Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc Natl Acad Sci U S A 105:1650–1655PubMedCrossRefGoogle Scholar
  31. [31]
    Atanackovic D et al (2004) Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J Immunol 172:3289–3296PubMedGoogle Scholar
  32. [32]
    Grah J et al (2008) Immunohystochemical expression of cancer/testis antigens (MAGE-A3/4, NY-ESO-1) in non-small cell lung cancer: the relationship with clinical-pathological features. Coll Antropol 32:731–736PubMedGoogle Scholar

Copyright information

© Springer Medizin-Verlag 2013

Authors and Affiliations

  1. 1.Institut für Pathologie, CIO Köln Bonn, Universitätsklinikum KölnKölnDeutschland
  2. 2.Klinik für Innere Medizin I, CIO Köln Bonn, Universitätsklinikum KölnKölnDeutschland

Personalised recommendations