Stato dell’arte e novità sul trattamento delle fratture esposte

  • Saverio ComitiniEmail author
  • Matteo Berti
  • Marco Ganci
  • Luca Amendola
  • Matteo Commessatti
  • Paolo Barca
  • Guido Grippo
  • Domenico S. Tigani

Open fractures: classification, management and innovative devices


Open fractures management has always been one of the main challenges in traumatologic surgery: definition of the most appropriate therapeutic protocol is a research and debate topic. Infectious risk minimisation, soft-tissue damage resolution, fracture reduction and fixation are the main objectives in order to recover anatomical and functional integrity of the involved district. Management protocols are characterized by the contrast between an early total care approach and a gradual damage control approach.

Gustilo-Anderson classification is still the most widely used in order to set open fractures management, but its limitations have led to the development of other important classifications.

This article, through a literature review, aims at summarising main classifications and state of the art on open fractures treatment and at highlighting latest protocols and technical solutions adopted: negative wound pression therapy, antibacterial coated nails and other innovative devices.


Conflitto di interesse

Gli autori Saverio Comitini, Matteo Berti, Marco Ganci, Luca Amendola, Matteo Commessatti, Paolo Barca, Guido Grippo e Domenico S. Tigani dichiarano di non avere alcun conflitto di interesse.

Consenso informato e conformità agli standard etici

Tutte le procedure descritte nello studio e che hanno coinvolto esseri umani sono state attuate in conformità alle norme etiche stabilite dalla dichiarazione di Helsinki del 1975 e successive modifiche. Il consenso informato è stato ottenuto da tutti i pazienti inclusi nello studio.

Human and Animal Rights

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.


  1. 1.
    Nogueira Giglio P, Fogaça Cristante A, Ricardo Pécora J et al. (2015) Advances in treating exposed fractures. Rev Bras Ortop 50(2):125–130 Google Scholar
  2. 2.
    Elniel AR, Giannoudis PV (2018) Open fractures of the lower extremity: current management and clinical outcomes. EFORT Open Rev 3(5):316–325 Google Scholar
  3. 3.
    O’Brien CL, Menon M, Jomha NM (2014) Controversies in the management of open fractures. Open Orthop J 8:178–184 Google Scholar
  4. 4.
    Ryan SP, Pugliano V (2014) Controversies in initial management of open fractures. Scand J Surg 103(2):132–137 Google Scholar
  5. 5.
    Hannigan GD, Pulos N, Grice EA, Mehta S (2015) Current concepts and ongoing research in the prevention and treatment of open fracture infections. Adv Wound Care 4(1):59–74 Google Scholar
  6. 6.
    Nanchahal J, Nayagam S, Khan U et al. British Association of Plastic (2009) Standards for the management of open fractures of the lower limb. Royal Society of Medicine Press, London Google Scholar
  7. 7.
    Gustilo RB, Mendoza RM, Williams DN (1984) Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 24(8):742–746 Google Scholar
  8. 8.
    Craig J, Fuchs T, Jenks M et al. (2014) Systematic review and meta-analysis of the additional benefit of local prophylactic antibiotic therapy for infection rates in open tibia fractures treated with intramedullary nailing. Int Orthop 38(5):1025–1030 Google Scholar
  9. 9.
    Orthopaedic Trauma Association, Open Fracture Study Group (2010) A new classification scheme for open fractures. J Orthop Trauma 24(8):457–464 Google Scholar
  10. 10.
    Agel J, Evans AR, Marsh JL et al. (2013) The OTA open fracture classification: a study of reliability and agreement. J Orthop Trauma 27(7):379–384 Google Scholar
  11. 11.
    Agel J, Rockwood T, Barber R, Marsh JL (2014) Potential predictive ability of the orthopaedic trauma association open fracture classification. J Orthop Trauma 28(5):300–306 Google Scholar
  12. 12.
    Rajasekaran S, Sabapathy SR, Dheenadhayalan J et al. (2015) Ganga hospital open injury score in management of open injuries. Eur J Trauma Emerg Surg 41(1):3–15 Google Scholar
  13. 13.
    Johansen K, Daines M, Howey T et al. (1990) Objective criteria accurately predict amputation following lower extremity trauma. J Trauma 30(5):568–572 Google Scholar
  14. 14.
    Venkatadass K, Grandhi TS, Rajasekaran S (2017) Use of Ganga Hospital Open Injury Severity Scoring for determination of salvage versus amputation in open type IIIB injuries of lower limbs in children-an analysis of 52 type IIIB open fractures. Injury 48(11):2509–2514 Google Scholar
  15. 15.
    Nicola R (2013) Early total care versus damage control: current concepts in the orthopedic care of polytrauma patients. ISRN Orthop 2013:329452 Google Scholar
  16. 16.
    Cherubino M, Valdatta L, Tos P et al. (2017) Role of negative pressure therapy as damage control in soft tissue reconstruction for open tibial fractures. J Reconstr Microsurg 33(Suppl 1):S08–S13 Google Scholar
  17. 17.
    Gosselin RA, Roberts I, Gillespie WJ (2004) Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst Rev 1:CD003764 Google Scholar
  18. 18.
    Patzakis MJ, Harvey JP, Ivler D (1974) The role of antibiotics in the management of open fractures. J Bone Jt Surg, Am 56(3):532–541 Google Scholar
  19. 19.
    Saveli CC, Belknap RW, Morgan SJ, Price CS (2011) The role of prophylactic antibiotics in open fractures in an era of community-acquired methicillin-resistant Staphylococcus aureus. Orthopedics 34(8):611–616 Google Scholar
  20. 20.
    Duration of administration of antibiotic agents for open fractures: meta-analysis of the existing evidence. Available at: Accessed on 12 October 2018
  21. 21.
    Patzakis MJ, Wilkins J (1989) Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res 243:36–40 Google Scholar
  22. 22.
    Vasenius J, Tulikoura I, Vainionpää S, Rokkanen P (1998) Clindamycin versus cloxacillin in the treatment of 240 open fractures. a randomized prospective study. Ann Chir Gynaecol 87(3):224–228 Google Scholar
  23. 23.
    Zalavras CG (2017) Prevention of infection in open fractures. Infect Dis Clin North Am 31(2):339–352 Google Scholar
  24. 24.
    Kreder HJ, Armstrong P (1994) The significance of perioperative cultures in open pediatric lower-extremity fractures. Clin Orthop Relat Res 302:206–212 Google Scholar
  25. 25.
    Lee J (1997) Efficacy of cultures in the management of open fractures. Clin Orthop Relat Res 339:71–75 Google Scholar
  26. 26.
    Valenziano CP, Chattar-Cora D, O’Neill A et al. (2002) Efficacy of primary wound cultures in long bone open extremity fractures: are they of any value? Arch Orthop Trauma Surg 122(5):259–261 Google Scholar
  27. 27.
    Halawi MJ, Morwood MP (2015) Acute management of open fractures: an evidence-based review. Orthopedics 38(11):e1025-33. 2015 Google Scholar
  28. 28.
    Lister BJ (1867) The classic: on the antiseptic principle in the practice of surgery. Clin Orthop Relat Res 468(8):2012–2016. 2010 Google Scholar
  29. 29.
    Buckwalter JA (2000) Advancing the science and art of orthopaedics. Lessons from history. J Bone Jt Surg Am 82-A(12):1782–1803 Google Scholar
  30. 30.
    Crowley DJ, Kanakaris NK, Giannoudis PV (2007) Debridement and wound closure of open fractures: the impact of the time factor on infection rates. Injury 38(8):879–889 Google Scholar
  31. 31.
    Artz CP, Sako Y, Scully RE (1956) An evaluation of the surgeon’s criteria for determining the viability of muscle during debridement. AMA Arch Surg 73(6):1031–1035 Google Scholar
  32. 32.
    Trionfo A, Cavanaugh PK, Herman MJ (2016) Pediatric open fractures. Orthop Clin N Am 47(3):565–578 Google Scholar
  33. 33.
    Gustilo RB, Merkow RL, Templeman D (1990) The management of open fractures. J Bone Jt Surg, Am 72(2):299–304 Google Scholar
  34. 34.
    Investigators FLOW (2015) A trial of wound irrigation in the initial management of open fracture wounds. N Engl J Med 373(27):2629–2641 Google Scholar
  35. 35.
    Fernandez R, Griffiths R (2012) Water for wound cleansing. Cochrane Database Syst Rev 2:CD003861 Google Scholar
  36. 36.
    Crowley DJ, Kanakaris NK, Giannoudis PV (2007) Irrigation of the wounds in open fractures. J Bone Jt Surg, Br 89(5):580–585 Google Scholar
  37. 37.
    Draeger RW, Dahners LE (2006) Traumatic wound debridement: a comparison of irrigation methods. J Orthop Trauma 20(2):83–88 Google Scholar
  38. 38.
    Hofmann A, Dietz S-O, Pairon P, Rommens PM (2015) The role of intramedullary nailing in treatment of open fractures. Eur J Trauma Emerg Surg 41(1):39–47 Google Scholar
  39. 39.
    Gopal S, Majumder S, Batchelor AG et al. (2000) Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Jt Surg, Br 82(7):959–966 Google Scholar
  40. 40.
    Ramasamy PR (2017) Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: the “fix and shift” technique. Indian J Orthop 51(1):55–68 Google Scholar
  41. 41.
    Salih S, Mills E, McGregor-Riley J et al. (2018) Transverse debridement and acute shortening followed by distraction histogenesis in the treatment of open tibial fractures with bone and soft tissue loss. Strategies Trauma Limb Reconstr 13(3):129–135 Google Scholar
  42. 42.
    Stannard JP, Singanamala N, Volgas DA (2010) Fix and flap in the era of vacuum suction devices: What do we know in terms of evidence based medicine? Injury 41(8):780–786 Google Scholar
  43. 43.
    Edwards CC, Simmons SC, Browner BD, Weigel MC (1988) Severe open tibial fractures. Results treating 202 injuries with external fixation. Clin Orthop Relat Res 230:98–115 Google Scholar
  44. 44.
    Giotakis N, Narayan B (2007) Stability with unilateral external fixation in the tibia. Strategies Trauma Limb Reconstr 2(1):13–20 Google Scholar
  45. 45.
    O’Toole RV, Gary JL, Reider L et al. (2017) A prospective randomized trial to assess fixation strategies for severe open tibia fractures: modern ring external fixators versus internal fixation (FIXIT Study). J Orthop Trauma 31(Suppl 1):S10–S17 Google Scholar
  46. 46.
    Metsemakers WJ, Reul M, Nijs S (2015) The use of gentamicin-coated nails in complex open tibia fracture and revision cases: a retrospective analysis of a single centre case series and review of the literature. Injury 46(12):2433–2437 Google Scholar
  47. 47.
    Bonnevialle P (2017) Operative treatment of early infection after internal fixation of limb fractures (exclusive of severe open fractures). Orthop Traumatol Surg Res 103(1S):S67–S73 Google Scholar
  48. 48.
    Henley MB, Chapman JR, Agel J et al. (1998) Treatment of type II, IIIA, and IIIB open fractures of the tibial shaft: a prospective comparison of unreamed interlocking intramedullary nails and half-pin external fixators. J Orthop Trauma 12(1):1–7 Google Scholar
  49. 49.
    Buzzi R (2005) Il trattamento delle fratture esposte di tibia con inchiodamento endomidollare bloccato. GIOT 31:224–229 Google Scholar
  50. 50.
    Duan X, Al-Qwbani M, Zeng Y et al. (2012) Intramedullary nailing for tibial shaft fractures in adults. Cochrane Database Syst Rev 1:CD008241 Google Scholar
  51. 51.
    Schemitsch EH, Bhandari M, Guyatt G et al. (2012) Prognostic factors for predicting outcomes after intramedullary nailing of the tibia. J Bone Jt Surg, Am 94(19):1786–1793 Google Scholar
  52. 52.
    Tosounidis TH, Calori GM, Giannoudis PV (2016) The use of Reamer-irrigator-aspirator in the management of long bone osteomyelitis: an update. Eur J Trauma Emerg Surg 42(4):417–423 Google Scholar
  53. 53.
    Schmidmaier G, Kerstan M, Schwabe P et al. (2017) Clinical experiences in the use of a gentamicin-coated titanium nail in tibia fractures. Injury 48(10):2235–2241 Google Scholar
  54. 54.
    Fuchs T, Stange R, Schmidmaier G, Raschke MJ (2011) The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg 131(10):1419–1425 Google Scholar
  55. 55.
    Alt V (2017) Antimicrobial coated implants in trauma and orthopaedics—a clinical review and risk-benefit analysis. Injury 48(3):599–607 Google Scholar
  56. 56.
    Melvin JS, Dombroski DG, Torbert JT et al. (2010) Open tibial shaft fractures: II. Definitive management and limb salvage. J Am Acad Orthop Surg 18(2):108–117 Google Scholar
  57. 57.
    Drago L, Boot W, Dimas K et al. (2014) Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res 472(11):3311–3323 Google Scholar
  58. 58.
    Giavaresi G, Meani E, Sartori M et al. (2014) Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant. Int Orthop 38(7):1505–1512 Google Scholar
  59. 59.
    Malizos K, Blauth M, Danita A et al. (2017) Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J Orthop Traumatol 18(2):159–169 Google Scholar
  60. 60.
    Trentinaglia MT, Van Der Straeten C, Morelli I et al. (2018) Economic evaluation of antibacterial coatings on healthcare costs in first year following total joint arthroplasty. J Arthroplast 33(6):1656–1662 Google Scholar

Copyright information

© Società Italiana Ortopedici Traumatologi Ospedalieri d’Italia 2019

Authors and Affiliations

  • Saverio Comitini
    • 1
    Email author
  • Matteo Berti
    • 2
  • Marco Ganci
    • 3
  • Luca Amendola
    • 1
  • Matteo Commessatti
    • 1
  • Paolo Barca
    • 1
  • Guido Grippo
    • 1
  • Domenico S. Tigani
    • 1
  1. 1.U.O. di Ortopedia e TraumatologiaOspedale Maggiore C. A. PizzardiBolognaItalia
  2. 2.Università degli Studi di BolognaIstituto Ortopedico RizzoliBolognaItalia
  3. 3.Azienda Ospedaliero-Universitaria, Policlinico Vittorio EmanueleUniversità degli Studi di CataniaCataniaItalia

Personalised recommendations