A stable cardinality distance for topological classification

  • Vasileios MaroulasEmail author
  • Cassie Putman Micucci
  • Adam Spannaus
Regular Article


This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.


Stability Classification Persistent homology Persistence diagrams Crystal structure of materials 

Mathematics Subject Classification

62H30 62P30 55N99 54H99 



The authors would like to thank the anonymous associate editor and two anonymous reviewers for their insightful comments which substantially improved the manuscript. Moreover, the authors would like to thank Professor David J. Keffer (Department of Materials Science and Engineering at The University of Tennessee) for providing the codes which create the realistic APT datasets and for useful discussions, as well as Professor Kody J.H. Law (School of Mathematics at the University of Manchester) for insightful discussions.


  1. Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S, Hanson E, Motta F, Ziegelmeier L (2017) Persistence images: a stable vector representation of persistent homology. J Mach Learn Res 18(1):218–252MathSciNetzbMATHGoogle Scholar
  2. Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econ J Econ Soc 47(5):1287–1294MathSciNetzbMATHGoogle Scholar
  3. Bubenik P (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102MathSciNetzbMATHGoogle Scholar
  4. Carlsson G, Zomorodian A, Collins A, Guibas LJ (2005) Persistence barcodes for shapes. Int J Shape Model 11(02):149–187zbMATHCrossRefGoogle Scholar
  5. Carriere M, Cuturi M, Oudot S (2017) Sliced Wasserstein kernel for persistence diagrams. In: Proceedings of the 34th international conference on machine learning-volume 70, JMLR. org, pp 664–673Google Scholar
  6. Chazal F, Cohen-Steiner D, Mérigot Q (2011) Geometric inference for probability measures. Found Comput Math 11(6):733–751MathSciNetzbMATHCrossRefGoogle Scholar
  7. Chazal F, de Silva V, Oudot S (2014) Persistence stability for geometric complexes. Geom Dedic 173(1):193–214MathSciNetzbMATHCrossRefGoogle Scholar
  8. Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the cambridge structural database. J Appl Crystallogr 37(2):331–334CrossRefGoogle Scholar
  9. Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete Comput Geom 37(1):103–120MathSciNetzbMATHCrossRefGoogle Scholar
  10. Cohen-Steiner D, Edelsbrunner H, Harer J, Mileyko Y (2010) Lipschitz functions have \({L}_p\)-stable persistence. Found Comput Math 10(2):127–139MathSciNetzbMATHCrossRefGoogle Scholar
  11. Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Society, ProvidencezbMATHGoogle Scholar
  12. Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological persistence and simplification. In: Proceedings 41st annual symposium on foundations of computer science, 2000, IEEE, pp 454–463Google Scholar
  13. Efron B, Hastie T (2016) Computer age statistical inference, vol 5. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  14. Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A et al (2014) Confidence sets for persistence diagrams. Ann Stat 42(6):2301–2339MathSciNetzbMATHCrossRefGoogle Scholar
  15. Gault B, Moody MP, De Geuser F, La Fontaine A, Stephenson LT, Haley D, Ringer SP (2010) Spatial resolution in atom probe tomography. Microsc Microanal 16(1):99–110CrossRefGoogle Scholar
  16. Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe crystallography. Materials Today 15(9):378–386CrossRefGoogle Scholar
  17. Goff M (2011) Extremal Betti numbers of Vietoris–Rips complexes. Discrete Comput Geom 46(1):132–155MathSciNetzbMATHCrossRefGoogle Scholar
  18. Hicks D, Oses C, Gossett E, Gomez G, Taylor RH, Toher C, Mehl MJ, Levy O, Curtarolo S (2018) Aflow-sym: platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallogr Sect A Found Adv 74(3):184–203MathSciNetCrossRefGoogle Scholar
  19. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small lennard-jones clusters. J Phys Chem 91(19):4950–4963CrossRefGoogle Scholar
  20. Katsoulakis MA, Zabaras N (2017) Special issue: predictive multiscale materials modeling. J Comput Phys 338(1):18–20MathSciNetzbMATHCrossRefGoogle Scholar
  21. Kelly TF, Miller MK, Rajan K, Ringer SP (2013) Atomic-scale tomography: a 2020 vision. Microsc Microanal 19(3):652–664CrossRefGoogle Scholar
  22. Larsen PM, Schmidt S, Schiøtz J (2016) Robust structural identification via polyhedral template matching. Modell Simul Mater Sci Eng 24(5):055007CrossRefGoogle Scholar
  23. Larson DJ (2013) Local electrode atom probe tomography: a user’s guide. Springer, BerlinCrossRefGoogle Scholar
  24. Marchese A, Maroulas V (2016) Topological learning for acoustic signal identification. In: 2016 19th International conference on information fusion (FUSION), IEEE, pp 1377–1381Google Scholar
  25. Marchese A, Maroulas V (2018) Signal classification with a point process distance on the space of persistence diagrams. Adv Data Anal Classif 12(3):657–682MathSciNetzbMATHCrossRefGoogle Scholar
  26. Marchese A, Maroulas V, Mike J (2017) K-means clustering on the space of persistence diagrams. In: Wavelets and sparsity XVII, International Society for Optics and Photonics, vol 10394, p 103940WGoogle Scholar
  27. Maroulas V, Mike JL, Oballe C (2019) Nonparametric estimation of probability density functions of random persistence diagrams. J Mach Learn Res 20(151):1–49MathSciNetGoogle Scholar
  28. Maroulas V, Nasrin F, Oballe C (2019) A bayesian framework for persistent homology. SIAM J Math Data Sci Appear. arXiv:1901.02034
  29. McNutt NW, Rios O, Maroulas V, Keffer DJ (2017) Interfacial Li-ion localization in hierarchical carbon anodes. Carbon 111:828–834CrossRefGoogle Scholar
  30. Miller MK (2014) Atom-probe tomography: the local electrode atom probe. Springer, BerlinGoogle Scholar
  31. Miller MK, Kelly TF, Rajan K, Ringer SP (2012) The future of atom probe tomography. Mater Today 15(4):158–165CrossRefGoogle Scholar
  32. Moody MP, Gault B, Stephenson LT, Marceau RK, Powles RC, Ceguerra AV, Breen AJ, Ringer SP (2011) Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy. Microsc Microanal 17(2):226–239CrossRefGoogle Scholar
  33. Pfender F, Ziegler GM (2004) Kissing numbers, sphere packings, and some unexpected proofs. Not Am Math Soc 51:873–883MathSciNetzbMATHGoogle Scholar
  34. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nat Commun 6:8485CrossRefGoogle Scholar
  35. Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJ, Neuefeind JC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:5964CrossRefGoogle Scholar
  36. Spannaus A, Maroulas V, Keffer DJ, Law KJH (2019) Bayesian point set registration. In: 2017 MATRIX Annals, Springer, pp 99–120Google Scholar
  37. Togo A, Tanaka I (2018) Spglib : a software library for crystal symmetry search. arXiv:1808.01590
  38. Wasserman L (2018) Topological data analysis. Annu Rev Stat Appl 5:501–532MathSciNetCrossRefGoogle Scholar
  39. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93CrossRefGoogle Scholar
  40. Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM (2018) Insightful classification of crystal structures using deep learning. Nat Commun 9(1):2775CrossRefGoogle Scholar
  41. Zomorodian A, Carlsson G (2005) Computing persistent homology. Discrete Comput Geom 33(2):249–274MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations