Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification

Regular Article

Abstract

Given a row-stochastic matrix describing pairwise similarities between data objects, spectral clustering makes use of the eigenvectors of this matrix to perform dimensionality reduction for clustering in fewer dimensions. One example from this class of algorithms is the Robust Perron Cluster Analysis (PCCA+), which delivers a fuzzy clustering. Originally developed for clustering the state space of Markov chains, the method became popular as a versatile tool for general data classification problems. The robustness of PCCA+, however, cannot be explained by previous perturbation results, because the matrices in typical applications do not comply with the two main requirements: reversibility and nearly decomposability. We therefore demonstrate in this paper that PCCA+ always delivers an optimal fuzzy clustering for nearly uncoupled, not necessarily reversible, Markov chains with transition states.

Keywords

Perron eigenvalues Perturbation theory Molecular simulations 

Mathematics Subject Classification (2000)

60J10 62H30 65K05 

References

  1. Bapat RB, Rhagavan TES (1997) Nonnegative matrices and applications. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  2. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15:1373–1396MATHCrossRefGoogle Scholar
  3. Bezdek JC, Ehrlich R, Full W (1984) The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3): 191–203Google Scholar
  4. Bowman GR (2012) Coarse-grained Markov chains capture molecular thermodynamics and kinetics in no uncertain terms. arxiv.org/abs/1201.3867Google Scholar
  5. Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131(12):124101CrossRefGoogle Scholar
  6. Brémaud P (1999) Markov Chains: Gibbs Fields, Monte Carlo simulation, and Queues. Number 31 in texts in applied mathematics. Springer, New YorkGoogle Scholar
  7. Chodera JD, Singhal N, Swope WC, Pande VS, Dill KA (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126(155101)Google Scholar
  8. Coifman RR, Lafon S (2006) Diffusion maps. Appl Comput Harmon Anal 21:5–30MathSciNetMATHCrossRefGoogle Scholar
  9. Courtois PJ (1977) Decomposability: Queueing and computer system applications. Academic Press, OrlandoMATHGoogle Scholar
  10. Dellnitz M, Junge O (1999) On the approximation of complicated dynamical behavior. SIAM J Numer Anal 36(2):491–515MathSciNetCrossRefGoogle Scholar
  11. Deuflhard P (2003) From molecular dynamics to conformational dynamics in drug design. In: Kirkilionis M, Krömker S, Rannacher R, Tomi F (eds) Trends in nonlinear analysis. Springer, Berlin, pp 269–287CrossRefGoogle Scholar
  12. Deuflhard P, Weber M (2005) Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl 398:161–184MathSciNetMATHCrossRefGoogle Scholar
  13. Deuflhard P, Huisinga W, Fischer A, Schütte Ch (2000) Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl 315:39–59Google Scholar
  14. Fackeldey K, Bujotzek A, Weber M (2013) A meshless discretization method for Markov state models applied to explicit water peptide folding simulations. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations VI, volume 89 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, pp 141–154Google Scholar
  15. Fischer B, Buhmann JM (2002) Data resampling for path based clustering. In: Proceedings of the 24th DAGM symposium on pattern regognition, volume 2449 of Lecture Notes in Computer Science. Springer, London, pp 206–214Google Scholar
  16. Fischer I, Poland J (2005) Amplifying the block matrix structure for spectral clustering. In: van Otterlo M, Poel M, Nijholt A (eds) Proceedings of the 14th annual machine learning conference of Belgium and the Netherlands, pp 21–28Google Scholar
  17. Fischer B, Zöller T, Buhmann J (2001) Path based pairwise data clustering with application to texture segmentation. In: Energy minimization methods in computer vision and pattern recognition, volume 2134 of Lecture Notes in Computer Science. Springer, Berlin, pp 235–250Google Scholar
  18. Frenkel D, Smit B (2002) Understanding molecular simulation: from Algorithms to applications, volume 1 of computational science series. Academic Press, LondonGoogle Scholar
  19. Halgren T, Nachbar B (1996) Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17(5–6):587–615Google Scholar
  20. Jimenez R (2008) Fuzzy spectral clustering for identification of rock discontinuity sets. Rock Mech Rock Eng 41:929–939CrossRefGoogle Scholar
  21. Kannan R, Vempala S, Vetter A (2004) On clustering: good, bad and spectral. J ACM 51:497–515MathSciNetMATHCrossRefGoogle Scholar
  22. Kato T (1984) Perturbation theory for linear operators. Springer, BerlinMATHGoogle Scholar
  23. Kijima M (1997) Markov processes for stochastic modeling. Chapman and Hall, Stochastic Modeling SeriesGoogle Scholar
  24. Korenblum D, Shalloway D (2003) Macrostate data clustering. Phys Rev E 67:056704CrossRefGoogle Scholar
  25. Kube S, Deuflhard P (2006) Errata on ”Robust Perron Cluster Analysis in Conformation Dynamics”. December. http://www.zib.de/susanna.roeblitz
  26. Kube S, Weber M (2006) Coarse grained molecular kinetics. ZIB-Report 06–35, Zuse Institute BerlinGoogle Scholar
  27. Kube S, Weber M (2007) A coarse graining method for the identification of transition rates between molecular conformations. J Chem Phys 126(2)Google Scholar
  28. Lehoucq RB, Sorensen DC (1996) Deflation techniques for an implicitly re-started Arnoldi iteration. SIAM J Matrix Anal Appl 17(4):789–821MathSciNetMATHCrossRefGoogle Scholar
  29. Metzner P, Weber M, Schütte C (2010) Observation uncertainty in reversible Markov chains. Phys Rev E Stat Nonlinear Soft Matter Phys 82:031114CrossRefGoogle Scholar
  30. Meyer CD (1989) Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev 31(2):240–272MathSciNetMATHCrossRefGoogle Scholar
  31. Nadler B, Lafon S, Coifman RR, Kevrekidis IG (2005) Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: Advances in neural information processing systems, vol. 18. MIT Press, Cambridge, pp 955–962Google Scholar
  32. Nadler B, Lafon S, Coifman RR, Kevrekidis IG (2006) Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl Comput Harmon Anal 21(1):113–127Google Scholar
  33. Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge, pp 849–856Google Scholar
  34. Prinz J-H, Wu H, Sarich M, Keller B, Fischbach M, Held M, Chodera JD, Schütte Ch, Noé F (2011) Markov models of molecular kinetics: Generation and validation. J Chem Phys 134:174105CrossRefGoogle Scholar
  35. Röblitz S (2008) Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000008079
  36. Röblitz S, Weber M (2009) Fuzzy spectral clustering by PCCA+. In: Mucha H-J, Ritter G (eds) Classification and clustering: models, software and applications, number 26 in WIAS Report, Berlin. WIAS Berlin, WIAS Berlin, pp 73–79Google Scholar
  37. Sarich M, Noé F, Schütte Ch (2010) On the approximation quality of Markov state models. Multiscale Model Simul 8(4):1154–1177MathSciNetMATHCrossRefGoogle Scholar
  38. Schütte Ch (1999) Conformational dynamics: modelling, theory, algorithms, and application to biomolecules. Habilitation thesis, Department of Mathematics and Computer Science, Freie Universität BerlinGoogle Scholar
  39. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEE Trans Pattern Anal Mach Intell 22(8):888–905Google Scholar
  40. Sleijpen GLG, van der Vorst HA (1996) A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl 17(2):401–425MathSciNetMATHCrossRefGoogle Scholar
  41. Stewart GW (1984) On the structure of nearly uncoupled Markov chains. In: Iazeolla G, Courtois PJ, Hordijk A (eds) Mathematical computer performance and reliability. Elsevier, New York, pp 287–302Google Scholar
  42. Stewart GW, Ji-guang Sun (1990) Matrix perturbation theory. Computer science and scientific computing. Academic Press, BostonGoogle Scholar
  43. von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416MathSciNetCrossRefGoogle Scholar
  44. Weber M (2003) Improved Perron cluster analysis. ZIB-Report 03–04, Zuse Institute Berlin (ZIB)Google Scholar
  45. Weber M (2006) Meshless methods in conformation dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität Berlin. Verlag Dr. Hut, MünchenGoogle Scholar
  46. Weber M (2013) Adaptive spectral clustering in molecular simulations. In: Giusti A, Ritter G, Vichi M (eds) Classification and data mining. Springer, Berlin, pp 147–154CrossRefGoogle Scholar
  47. Weber M, Galliat T (2002) Characterization of transition states in conformational dynamics using Fuzzy sets. ZIB-Report 02–12, Zuse Institute BerlinGoogle Scholar
  48. Weber M, Rungsarityotin W, Schliep A (2006) An indicator for the number of clusters using a linear map to simplex structure. In: Spiliopoulou M, Kruse R, Borgelt C, Nürnberger A, Gaul W (eds) From data and information analysis to knowledge engineering, studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 103–110CrossRefGoogle Scholar
  49. White B, Shalloway D (2009) Efficient uncertainty minimization for fuzzy spectral clustering. Phys Rev E 80:056704CrossRefGoogle Scholar
  50. Zhao F, Liu H, Jiao L (2011) Spectral clustering with fuzzy similarity measure. Digit Signal Process 21:701–709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Zuse Institute Berlin (ZIB)BerlinGermany

Personalised recommendations