Advertisement

Fast algorithms for determining (generalized) core groups in social networks

  • Vladimir BatageljEmail author
  • Matjaž Zaveršnik
Regular Article

Abstract

The structure of a large network (graph) can often be revealed by partitioning it into smaller and possibly more dense sub-networks that are easier to handle. One of such decompositions is based on “k-cores”, proposed in 1983 by Seidman. Together with connectivity components, cores are one among few concepts that provide efficient decompositions of large graphs and networks. In this paper we propose an efficient algorithm for determining the cores decomposition of a given network with complexity \({\mathcal{O}(m)}\), where m is the number of lines (edges or arcs). In the second part of the paper the classical concept of k-core is generalized in a way that uses a vertex property function instead of degree of a vertex. For local monotone vertex property functions the corresponding generalized cores can be determined in \({\mathcal{O}(m\cdot\max(\Delta,\log{n}))}\) time, where n is the number of vertices and Δ is the maximum degree. Finally the proposed algorithms are illustrated by the analysis of a collaboration network in the field of computational geometry.

Keywords

Core Large network Decomposition Graph algorithm 

Mathematics Subject Classification (2000)

05A18 05C70 05C85 05C90 68R10 68W40 92H30 92G30 93A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed A, Batagelj V, Fu X, Hong S-H, Merrick D, Mrvar A (2007) Visualisation and analysis of the internet movie database. In: Proceedings of the Asia-Pacific symposium on visualisation (APVIS2007), Sydney, NSW, Australia, 5–7 February 2007. IEEE, New York, 17–24Google Scholar
  2. Alvarez-Hamelin JI, Dall’asta L, Barrat A, Vespignani A (2008) K-core decomposition of internet graphs: hierarchies, selfsimilarity and measurement biases. Netw Heterog Media 3(2): 371–393MathSciNetzbMATHCrossRefGoogle Scholar
  3. Batagelj V, Mrvar A (2003) Pajek—analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin, pp 77–103. http://pajek.imfm.si
  4. Batagelj V (2004) Pajek datasets: Geom. http://vlado.fmf.uni-lj.si/pub/networks/Data/Collab/Geom.htm
  5. Batagelj V, Mrvar A (2000) Some analyses of Erdős collaboration graph. Soc Netw 22: 173–186MathSciNetCrossRefGoogle Scholar
  6. Batagelj V, Mrvar A, Zaveršnik M (1999) Partitioning approach to visualization of large graphs. In: KratochvÍl J (ed) Proceedings of 7th international symposium on graph drawing, 15–19 September 1999, Štiřín Castle, Czech Republic (Lecture notes in computer science, vol. 1731). Springer, Berlin, pp 90–97Google Scholar
  7. Batagelj V, Brandenburg FJ, Didimo W, Liotta G, Palladino P, Patrignani M (2010) Visual analysis of large graphs using (X;Y)-clustering and hybrid visualizations. In: IEEE Pacific visualization 2010 (PacVis ’10). IEEE, New YorK, pp 209–216Google Scholar
  8. Beebe NHF (2002) Nelson H. F. Beebe’s bibliographies page. http://www.math.utah.edu/~beebe/bibliographies.html
  9. Beiro MG, Alvarez-Hamelin JI, Busch JR (2008) A low complexity visualization tool that helps to perform complex systems analysis. New J Phys 10:125003, 1–18Google Scholar
  10. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, CambridgezbMATHGoogle Scholar
  11. Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) k-Core architecture and k-core percolation on complex networks. Phys D Nonlinear Phenom 224(1–2): 7–19MathSciNetzbMATHCrossRefGoogle Scholar
  12. Eisterlehner F, Hotho A, Jäschke R (eds) (2009) Proceedings of ECML PKDD discovery challenge 2009 (DC09). http://www.kde.cs.uni-kassel.de/ws/dc09/papers/proceedings.pdf
  13. Garey MR, Johnson DS (1979) Computer and intractability. Freeman, San FranciscoGoogle Scholar
  14. Janson S, Luczak MJ (2008) Asymptotic normality of the k-core in random graphs. Ann Appl Probab 18(3): 1085–1137MathSciNetzbMATHCrossRefGoogle Scholar
  15. Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. Lecture notes in computer science, vol 4702. Springer, Berlin, pp 506–514Google Scholar
  16. LaNet-vi (2009) Large network visualization tool. http://xavier.informatics.indiana.edu/lanet-vi/
  17. Seidman SB (1983) Network structure and minimum degree. Soc Netw 5: 269–287MathSciNetCrossRefGoogle Scholar
  18. Schwartz J-M, Nacher JC (2009) Local and global modes of drug action in biochemical networks. BMC Chem Biol 9: 4–114CrossRefGoogle Scholar
  19. Wang J-C, Chiu C-C (2008) Recommending trusted online auction sellers using social network analysis. Expert Syst Appl Int J Arch 34(3): 1666–1679CrossRefGoogle Scholar
  20. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  21. Welsh DJA, Powell MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J 10(1): 85–86zbMATHCrossRefGoogle Scholar
  22. Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5: 444–449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsFMF, University of LjubljanaLjubljanaSlovenia

Personalised recommendations