Detection of multivariate outliers in business survey data with incomplete information

Abstract

Many different methods for statistical data editing can be found in the literature but only few of them are based on robust estimates (for example such as BACON-EEM, epidemic algorithms (EA) and transformed rank correlation (TRC) methods of Béguin and Hulliger). However, we can show that outlier detection is only reasonable if robust methods are applied, because the classical estimates are themselves influenced by the outliers. Nevertheless, data editing is essential to check the multivariate data for possible data problems and it is not deterministic like the traditional micro editing where all records are extensively edited manually using certain rules/constraints. The presence of missing values is more a rule than an exception in business surveys and poses additional severe challenges to the outlier detection. First we review the available multivariate outlier detection methods which can cope with incomplete data. In a simulation study, where a subset of the Austrian Structural Business Statistics is simulated, we compare several approaches. Robust methods based on the Minimum Covariance Determinant (MCD) estimator, S-estimators and OGK-estimator as well as BACON-BEM provide the best results in finding the outliers and in providing a low false discovery rate. Many of the discussed methods are implemented in the R package \({\tt{rrcovNA}}\) which is available from the Comprehensive R Archive Network (CRAN) at http://www.CRAN.R-project.org under the GNU General Public License.

This is a preview of subscription content, log in to check access.

References

  1. Barnett V, Lewis T (1994) Outliers in statistical data. Wiley, New York

    Google Scholar 

  2. Béguin C, Hulliger B (2004) Multivariate outlier detection in incomplete survey data: the epidemic algorithm and transformed rank correlations. J R Stat Soc Ser B (Stat Methodol) 127(2): 275–294

    Google Scholar 

  3. Béguin C, Hulliger B (2008) The BACON-EEM algorithm for multivariate outlier detection in incomplete survey data. Surv Methodol 34(1): 91–103

    Google Scholar 

  4. Billor N, Hadi AS, Vellemann PF (2000) Bacon: blocked adaptative computationally-efficient outlier nominators. Comput Stat Data Anal 34(3): 279–298

    MATH  Article  Google Scholar 

  5. Campbell NA (1989) Bushfire maping using NOAA AVHRR data. Technical report, CSIRO

  6. Cerioli A, Riani M, Atkinson AC (2009) Controlling the size of multivariate outlier tests with the MCD estimator of scatter. Stat Comput 19(3): 341–353

    Article  Google Scholar 

  7. Chambers RL (1986) Outlier robust finite population estimation. J Am Stat Assoc 81: 1063–1069

    MathSciNet  MATH  Article  Google Scholar 

  8. Copt S, Victoria-Feser MP (2004) Fast algorithms for computing high breakdown covariance matrices with missing data. In: Hubert M, Pison G, Struyf A, Van Aelst S (eds) Theory and applications of recent robust methods, statistics for industry and technology series. Birkhauser, Basel

    Google Scholar 

  9. Croux C, Haesbroeck G (1999) Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. J Multivariate Analy 71: 161–190

    MathSciNet  MATH  Article  Google Scholar 

  10. De Waal T (2003) Processing of erroneous and unsafe data. PhD thesis, Erasmus University, Rotterdam

  11. De Waal T (2009) Statistical data editing. In: Peffermann D, Rao C (eds) Handbook of statistics 29A. Sample surveys: design, methods and applications. Elsevier B. V., Amsterdam, pp 187–214

    Google Scholar 

  12. Dempster AP, Laird MN, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Stat Methodol) 39: 1–22

    MathSciNet  MATH  Google Scholar 

  13. Dinges G, Haitzmann M (2009) Modellbasierte Ergänzung der Konjunkturstatistik im Produzierenden Bereich; Darstellung der statistischen Grundgesamtheit im Produzierenden Bereich. Statistische Nachrichten 9:1153–1166. http://www.stat.at/web_de/downloads/methodik/kjp.pdf

  14. Donoho DL (1982) Breakdown properties of multivariate location estimators. Technical report, Harvard University, Boston. http://www-stat.stanford.edu/~donoho/Reports/Oldies/BPMLE.pdf

  15. EUREDIT Project (2004) Towards effective statistical editing and imputation strategies—findings of the Euredit project, vols 1 and 2. EUREDIT consortium. http://www.cs.york.ac.uk/euredit/results/results.html

  16. Eurostat (2008) NACE Rev. 2. Statistical classification of economic activites in the European community. Eurostat, methodologies and working papers, ISBN 978-92-79-04741-1

  17. Fellegi I, Holt D (1976) A systematic approach to automatic edit and imputation. J Am Stat Assoc 71: 17–35

    Article  Google Scholar 

  18. Filzmoser P, Garrett RG, Reimann C (2005) Multivariate outlier detection in exploration geochemistry. Comput Geosci 31: 579–587

    Article  Google Scholar 

  19. Filzmoser P, Maronna R, Werner M (2008) Outlier identification in high dimensions. Comput Stat Data Anal 52(3): 1694–1711

    MathSciNet  MATH  Article  Google Scholar 

  20. Franklin S, Brodeur M (1997) A practical application of a robust multivariate outlier detection method. In: Proceedings of the survey research methods section. American Statistical Association, pp 186–191. http://www.amstat.org/sections/srms/proceedings

  21. Franklin S, Brodeur M, Thomas S (2000) Robust multivariate outlier detection using Mahalanobis’ distance and Stahel–Donoho estimators. In: ICES II, international conference on establishment surveys II

  22. Granquist L (1990) A review of some macro-editing methods for rationalizing the editing process. In: Proceedings of the statistics Canada symposium, Ottawa, Canada, pp 225–234

  23. Granquist L (1997) The new view on editing. Int Stat Rev 65: 381–387

    Article  Google Scholar 

  24. Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics, the approach based on infuence functions. Wiley, New York

    Google Scholar 

  25. Hardin J, Rocke DM (2005) The distribution of robust distances. J Comput Graph Stat 14: 910–927

    MathSciNet  Article  Google Scholar 

  26. Hidiroglou MA, Lavallée P (2009) Sampling and estimation in business surveys. In: Peffermann D, Rao C (eds) Handbook of statistics 29A, sample surveys: design, methods and applications. Elsevier B. V., Amsterdam, pp 441–470

    Google Scholar 

  27. Huber PJ (1981) Robust statistics. Wiley, New York

    Google Scholar 

  28. Hubert M, Rousseeuw PJ, Vanden Branden K (2005) Robpca: a new approach to robust principal component analysis. Technometrics 47: 64–79

    MathSciNet  Article  Google Scholar 

  29. Hubert M, Rousseeuw PJ, van Aelst S (2008) High-breakdown robust multivariate methods. Stat Sci 23: 92–119

    Article  Google Scholar 

  30. Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. 5th edn. Prentice Hall, New Jersey

    Google Scholar 

  31. Lawrence D, McKenzie R (2000) The general application of significance editing. J Official Stat 16: 243–253

    Google Scholar 

  32. Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New York

    Google Scholar 

  33. Little RJA, Smith PJ (1987) Editing and imputation for quantitative data. J Am Stat Assoc 82: 58–69

    MathSciNet  MATH  Article  Google Scholar 

  34. Lopuhaä HP (1999) Asymptotics of reweighted estimators of multivariate location and scatter. Ann Stat 27: 1638–1665

    MATH  Article  Google Scholar 

  35. Lopuhaä HP, Rousseeuw PJ (1991) Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann Stat 19: 229–248

    MATH  Article  Google Scholar 

  36. Luzi O, De Waal T, Hulliger B, Di Zio M, Pannekoek J, Kilchmann D, Guarnera U, Hoogland J, Manzari A, Tempelman C (2007) Recommended practices for editing and imputation in cross-sectional business surveys. Report

  37. Maronna RA, Yohai VJ (1995) The behaviour of the Stahel-Donoho robust multivariate estimator. J Am Stat Assoc 90: 330–341

    MathSciNet  MATH  Article  Google Scholar 

  38. Maronna RA, Zamar RH (2002) Robust estimation of location and dispersion for high-dimensional datasets. Technometrics 44: 307–317

    MathSciNet  Article  Google Scholar 

  39. Maronna RA, Martin D, Yohai V (2006) Robust statistics: theory and methods. Wiley, New York

    Google Scholar 

  40. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/, ISBN 3-900051-07-0

  41. Riani M, Atkinson AC, Cerioli A (2009) Finding an unknown number of multivariate outliers. J R Stat Soc Ser B (Stat Methodol) 71(2): 447–466

    Article  Google Scholar 

  42. Rousseeuw PJ, Leroy AM (1987) Robust Regression and outlier detection. Wiley, New York

    Google Scholar 

  43. Rousseeuw PJ, van Zomeren BC (1990) Unmasking multivariate outliers and leverage points. J Am Stat Assoc 85: 633–651

    Article  Google Scholar 

  44. Rubin DB (1993) Discussion: statistical disclosure limitation. J Official Stat 9: 462–468

    Google Scholar 

  45. Schafer J (1997) Analysis of incomplete multivariate data. Chapman and Hall, London

    Google Scholar 

  46. Schafer JL, Graham JW (2002) Missing data: our view of the state of the art. Psychol Methods 7: 147–177

    Article  Google Scholar 

  47. Stahel WA (1981a) Breakdown of covariance estimators. Research Report 31, ETH Zurich, Fachgruppe für Statistik

  48. Stahel WA (1981b) Robuste schätzungen: Infinitesimale optimalität und schätzungen von kovarianzmatrizen. PhD thesis no. 6881, Swiss Federal Institute of Technology (ETH), Zürich. http://www.e-collection.ethbib.ethz.ch/view/eth:21890

  49. Templ M, Filzmoser P (2008) Visualization of missing values using the R-package VIM. Reserach report cs-2008-1, Department of Statistics and Probability Therory, Vienna University of Technology, Vienna

  50. Todorov V, Filzmoser P (2009) An object oriented framework for robust multivariate analysis. J Stat Softw 32(3):1–47. http://www.jstatsoft.org/v32/i03/

    Google Scholar 

  51. Vanden Branden K, Verboven S (2009) Robust data imputation. Comput Biol Chem 33(1): 7–13

    MATH  Article  Google Scholar 

  52. Venables WN, Ripley BD (2003) Modern applied statistics with S. 4th edn. Springer, Berlin

    Google Scholar 

  53. Verboven S, Vanden Branden K, Goos P (2007) Sequential imputation for missing values. Comput Biol Chem 31(5–6): 320–327

    MATH  Article  Google Scholar 

  54. Wegman E (1990) Hyperdimensional data analysis using parallel coordinates. J Am Stat Assoc 85: 664–675

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valentin Todorov.

Additional information

The views expressed herein are those of the authors and do not necessarily reflect the views of the United Nations Industrial Development Organization.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Todorov, V., Templ, M. & Filzmoser, P. Detection of multivariate outliers in business survey data with incomplete information. Adv Data Anal Classif 5, 37–56 (2011). https://doi.org/10.1007/s11634-010-0075-2

Download citation

Keywords

  • Multivariate outlier detection
  • Robust statistics
  • Missing values

Mathematics Subject Classification (2000)

  • 62G35
  • 62D05
  • 62H99