Advertisement

Advances in Data Analysis and Classification

, Volume 2, Issue 2, pp 163–176 | Cite as

Cluster analysis of census data using the symbolic data approach

  • Antonio GiustiEmail author
  • Laura Grassini
Regular Article

Abstract

The aim of this paper is to investigate the economic specialization of the Italian local labor systems (sets of contiguous municipalities with a high degree of self-containment of daily commuter travel) by using the Symbolic Data approach, on the basis of data derived from the Census of Industrial and Service Activities. Specifically, the economic structure of a local labor system (LLS) is described by an interval-type variable, a special symbolic data type that allows for the fact that all municipalities within the same LLS do not have the same economic structure.

Keywords

Symbolic data analysis Local labor systems Interval variables 

Mathematics Subject Classification (2000)

62H30 62P20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnasco A (1977) Tre Italie. La problematica territoriale dello sviluppo italiano. IL Mulino, BolognaGoogle Scholar
  2. Becattini G (1996) I sistemi locali nello sviluppo economico italiano e nella sua interpretazione. Sviluppo Locale 2–3: 5–25Google Scholar
  3. Becattini G (2004) Industrial districts. A new approach to industrial change. Edward Elgar, CheltenhamGoogle Scholar
  4. Billard L, Diday E (2003) From the statistics of data to the statistics of knowledge: symbolic data analysis. J Am Stat Assoc 462: 470–487CrossRefMathSciNetGoogle Scholar
  5. Bock HH, Diday E (2000) Analysis of symbolic data. Springer, BerlinGoogle Scholar
  6. Chavent M, de Carvalho F, Lechevallier Y, Verde R (2006) New clustering methods of interval data. Comput Stat 21: 211–229 (Physica-Verlag)zbMATHCrossRefGoogle Scholar
  7. de Carvalho F, Lechevallier Y, Verde R (2004) Clustering methods in symbolic data analysis. In: Banks D, House L, McMorris FR, Arabie P, Gaul E (eds) Classification, clustering, and data mining applications. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, pp. 299–317Google Scholar
  8. Dei Ottati G, Grassini L (2006) Le trasformazioni industriali negli anni Novanta Un confronto fra sistemi locali di grande impresa e distretti industriali. In: Filippucci C (eds) Mutamenti nella geografia dell’economia italiana. Franco Angeli, Milano, pp. 135–157Google Scholar
  9. Dei Ottati G, Grassini L (2008) Italy’s employment changes in the nineties: a comparison between large enterprise areas and industrial districts. Envir Plan C 26: 5Google Scholar
  10. Diday E (2002) An introduction to symbolic data analysis and the SODAS Software. Electron J Symbol Data Anal n.0Google Scholar
  11. Diday E, Noirhomme-Fraiture M (2008) Symbolic data analysis and the SODAS Software. Wiley, New YorkzbMATHGoogle Scholar
  12. Dunford M, Greco L (2005) After the three Italies: wealth, inequality and industrial change. Blackwell Publishing, OxfordGoogle Scholar
  13. Facchinetti G, Mastroleo G, Paba S (2000) A fuzzy approach to the geography of industrial districts. Applied Computing Symposium, Como, Italy. http://www.acm.org/conferences
  14. ISTAT (2006) Rapporto annuale 2005. ISTAT, RomaGoogle Scholar
  15. ISTAT (2007) Rapporto annuale 2006. ISTAT, RomaGoogle Scholar
  16. ISTAT-Sforzi F (1997) I sistemi locali del lavoro 1991. ISTAT, RomaGoogle Scholar
  17. Merino F, Rubalcaba-Bermejo L (1999) Business services in European economy. European Commission, BrusselsGoogle Scholar
  18. SODAS (2004) User manual for the SODAS 2 Software. ASSO/WP3/D3.4 b, ASSO (Analysis System of Symbolic Official Data) Project [IST-200-25162]Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of FlorenceFirenzeItaly

Personalised recommendations