SVM-Maj: a majorization approach to linear support vector machines with different hinge errors

Abstract

Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector machine problem, study its effective aspects, and propose varieties of convex loss functions such as the standard for SVM with the absolute hinge error as well as the quadratic hinge and the Huber hinge errors. We present an iterative majorization algorithm that minimizes each of the adaptations. In addition, we show that many of the features of an SVM are also obtained by an optimal scaling approach to regression. We illustrate this with an example from the literature and do a comparison of different methods on several empirical data sets.

References

  1. Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications, 2nd edn. Springer, New York

    Google Scholar 

  2. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2: 121–167

    Article  Google Scholar 

  3. Chang C-C, Lin C-J (2006) LIBSVM: a library for support vector machines (Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm)

  4. Chu W, Keerthi S, Ong C (2003) Bayesian trigonometric support vector classifier. Neural Comput 15(9): 2227–2254

    MATH  Article  Google Scholar 

  5. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge

    Google Scholar 

  6. De Leeuw J (1994) Block relaxation algorithms in statistics. In: Bock H-H, Lenski W, Richter MM(eds) Information systems and data analysis. Springer, Berlin, pp 308–324

    Google Scholar 

  7. Gifi A (1990) Nonlinear multivariate analysis. Wiley, Chichester

    Google Scholar 

  8. Groenen PJF, Nalbantov G, Bioch JC (2007) Nonlinear support vector machines through iterative majorization. In: Decker R, Lenz H-J(eds) Advances in data analysis. Springer, Berlin, pp 149–162

    Google Scholar 

  9. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  10. Heiser WJ (1995) Convergent computation by iterative majorization: theory and applications in multidimensional data analysis. In: Krzanowski WJ(eds) Recent advances in descriptive multivariate analysis. Oxford University Press, Oxford, pp 157–189

    Google Scholar 

  11. Hsu C-W, Lin C-J (2006) BSVM: bound-constrained support vector machines (Software available at http://www.csie.ntu.edu.tw/~cjlin/bsvm/index.html)

  12. Huber PJ (1981) Robust statistics. Wiley, New York

    Google Scholar 

  13. Hunter DR, Lange K (2004) A tutorial on MM algorithms. Am Stat 39: 30–37

    MathSciNet  Article  Google Scholar 

  14. Joachims T (1999) Making large-scale SVM learning practical. In: Schölkopf B, Burges C, Smola A (eds) Advances in kernel methods—support vector learning. MIT-Press, Cambridge (http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.pdf)

  15. Joachims T (2006) Training linear SVMs in linear time. In: Proceedings of the ACM conference on knowledge discovery and data mining (KDD) (http://www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf)

  16. Kiers HAL (2002) Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Comput Stat Data Anal 41: 157–170

    MATH  Article  MathSciNet  Google Scholar 

  17. Kruskal JB (1965) The analysis of factorial experiments by estimating monotone transformations of the data. J R Stat Soc Ser B 27: 251–263

    MathSciNet  Google Scholar 

  18. Lange K, Hunter DR, Yang I (2000) Optimization transfer using surrogate objective functions. J Comput Graph Stat 9: 1–20

    Article  MathSciNet  Google Scholar 

  19. Newman D, Hettich S, Blake C, Merz C (1998) UCI repository of machine learning databases (http://www.ics.uci.edu/~mlearn/MLRepository.html University of California, Irvine, Department of Information and Computer Sciences)

  20. Rosset S, Zhu J (2007) Piecewise linear regularized solution paths. Ann Stat 35: 1012–1030

    MATH  Article  MathSciNet  Google Scholar 

  21. Rousseeuw PJ, Leroy AM (2003) Robust regression and outlier detection. Wiley, New York

    Google Scholar 

  22. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

    Google Scholar 

  23. Van der Kooij AJ (2007) Prediction accuracy and stability of regression with optimal scaling transformations. Unpublished doctoral dissertation, Leiden University

  24. Van der Kooij AJ, Meulman JJ, Heiser WJ (2006) Local minima in categorical multiple regression. Comput Stat Data Anal 50: 446–462

    Article  MATH  Google Scholar 

  25. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  26. Young FW (1981) Quantitative analysis of qualitative data. Psychometrika 46: 357–388

    MATH  Article  MathSciNet  Google Scholar 

  27. Young FW, De Leeuw J, Takane Y (1976) Additive structure in qualitative data: an alternating least squares method with optimal scaling features. Psychometrika 41: 471–503

    Article  Google Scholar 

  28. Young FW, De Leeuw J, Takane Y (1976) Regression with qualitative and quantitative variables: an alternating least squares method with optimal scaling features. Psychometrika 41: 505–529

    MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. J. F. Groenen.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Groenen, P.J.F., Nalbantov, G. & Bioch, J.C. SVM-Maj: a majorization approach to linear support vector machines with different hinge errors. ADAC 2, 17–43 (2008). https://doi.org/10.1007/s11634-008-0020-9

Download citation

Keywords

  • Support vector machines
  • Iterative majorization
  • Absolute hinge error
  • Quadratic hinge error
  • Huber hinge error
  • Optimal scaling

Mathematics Subject Classification (2000)

  • 90C30
  • 62H30
  • 68T05