Advertisement

Output Feedback Stabilization for MIMO Semi-linear Stochastic Systems with Transient Optimisation

  • Qi-Chun ZhangEmail author
  • Liang Hu
  • John Gow
Research Article

Abstract

This paper investigates the stabilisation problem and consider transient optimisation for a class of the multi-input-multi-output (MIMO) semi-linear stochastic systems. A control algorithm is presented via an m-block backstepping controller design where the closed-loop system has been stabilized in a probabilistic sense and the transient performance is optimisable by optimised by searching the design parameters under the given criterion. In particular, the transient randomness and the probabilistic decoupling will be investigated as case studies. Note that the presented control algorithm can be potentially extended as a framework based on the various performance criteria. To evaluate the effectiveness of this proposed control framework, a numerical example is given with simulation results. In summary, the key contributions of this paper are stated as follows: 1) one block backstepping-based output feedback control design is developed to stabilize the dynamic MIMO semi-linear stochastic systems using a linear estimator; 2) the randomness and probabilistic couplings of the system outputs have been minimized based on the optimisation of the design parameters of the controller; 3) a control framework with transient performance enhancement of multi-variable semi-linear stochastic systems has been discussed.

Keywords

Multi-input-multi-output (MIMO) stochastic systems output feedback stabilisation block backstepping randomness attenuation probabilistic decoupling mutual information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank the editor and the reviewers for their valuable comments. This work was supported by Higher Education Innovation Fund (No. HEIF 2018-2020), De Montfort University, Leicester, UK.

References

  1. [1]
    M. Krstic, I. Kanellakopoulos, P. V. Kokotovic. Nonlinear and Adaptive Control Design, New York, USA: Wiley, 1995.zbMATHGoogle Scholar
  2. [2]
    S. J. Liu, J. F. Zhang, Z. P. Jiang. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, vol. 43, no. 2, 238–251, 2007. DOI:  https://doi.org/10.1016/j.automatica.2006.08.028.
  3. [3]
    F. Wang, Z. Liu, Y. Zhang, C. L. P. Chen. Adaptive quantized controller design via backstepping and stochastic small-gain approach. IEEE Transactions on Fuzzy Systems, vol. 24, no. 2, 330–343, 2016. DOI: 10.1109/TFUZZ.2015.2454232.CrossRefGoogle Scholar
  4. [4]
    S. C. Tong, T. Wang, Y. M. Li, H. G. Zhang. Adaptive neural network output feedback control for stochastic non-linear systems with unknown dead-zone and unmodeled dynamics. IEEE Transactions on Cybernetics, vol. 44, no. 6, 910–921, 2014. DOI:  https://doi.org/10.1109/TCYB.2013.2276043.CrossRefGoogle Scholar
  5. [5]
    X. J. Xie, N. Duan. Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Transactions on Automatic Control, vol. 55, no. 5, 1197–1202, 2010. DOI:  https://doi.org/10.1109/TAC.2010.2043004.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    W. S. Chen, L. C. Jiao, J. Li, R. H. Li. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 3, 939–950, 2010. DOI:  https://doi.org/10.1109/TSMCB.2009.2033808.CrossRefGoogle Scholar
  7. [7]
    P. Jagtap, M. Zamani. Backstepping design for incremental stability of stochastic Hamiltonian systems with jumps. IEEE Transactions on Automatic Control, vol. 63, no. 1, 255–261, 2018. DOI:  https://doi.org/10.1109/TAC.2017.2720592.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Q. Wang, K. F. Liu, X. P. Liu, B. Chen, C. Lin. Neural-based adaptive output-feedback control for a class of non-strict-feedback stochastic nonlinear systems. IEEE Transactions on Cybernetics, vol. 45, no. 9, 1977–1987, 2015. DOI:  https://doi.org/10.1109/TCYB.2014.2363073.CrossRefGoogle Scholar
  9. [9]
    Y. T. Chang. Block backstepping control of MIMO systems. IEEE Transactions on Automatic Control, vol. 56, no. 5, 1191–1197, 2011. DOI:  https://doi.org/10.1109/TAC.2011.2109435.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    C. C. Cheng, G. I. Su, C. W. Chien. Block backstepping controllers design for a class of perturbed non-linear systems with m blocks. IET Control Theory & Applications, vol. 6, no. 13, 2021–2030, 2012. DOI:  https://doi.org/10.1049/iet-cta.2011.0431.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Q. C. Zhang, J. L. Zhou, H. Wang, T. Y. Chai. Output feedback stabilization for a class of multi-variable bilinear stochastic systems with stochastic coupling attenuation. IEEE Transactions on Automatic Control, vol. 62, no. 6, 2936–2942, 2017. DOI:  https://doi.org/10.1109/TAC.2016.2604683.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Q. C. Zhang, X. Yin. Observer-based parametric decoupling controller design for a class of multi-variable non-linear uncertain systems. Systems Science & Control Engineering, vol. 6, no. 1, 258–267, 2018. DOI:  https://doi.org/10.1080/21642583.2018.1483276.CrossRefGoogle Scholar
  13. [13]
    Q. C. Zhang, J. L. Zhou, H. Wang, T. Y. Chai. Minimized coupling in probability sense for a class of multivariate dynamic stochastic control systems. In Proceedings of the 54th IEEE Conference on Decision and Control, IEEE, Osaka, Japan, pp. 1846–1851, 2015. DOI:  https://doi.org/10.1109/CDC.2015.7402479.Google Scholar
  14. [14]
    Q. C. Zhang, L. Hu. Probabilistic decoupling control for stochastic non-linear systems using EKF-based dynamic set-point adjustment. In Proceedings of the UKACC 12th International Conference on Control, IEEE, Sheffield, UK, pp. 330–335, 2018. DOI:  https://doi.org/10.1109/CONTROL.2018.8516784.Google Scholar
  15. [15]
    Q. C. Zhang, Z. Wang, H. Wang. Parametric covariance assignment using a reduced-order closed-form covariance model. Systems Science & Control Engineering, vol. 4, no. 1, 78–86, 2016. DOI:  https://doi.org/10.1080/21642583.2016.1185045.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Q. C. Zhang, F. Sepulveda. A statistical description of pairwise interaction between nerve fibres? In Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering, IEEE, Shanghai, China, pp. 194–198, 2017. DOI:  https://doi.org/10.1109/NER.2017.8008324.Google Scholar
  17. [17]
    Q. C. Zhang, F. Sepulveda. A model study of the neural interaction via mutual coupling factor identification. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Seogwipo, South Korea, pp. 3329–3332, 2017. DOI:  https://doi.org/10.1109/EMBC.2017.8037569.
  18. [18]
    H. Wang. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Transactions on Automatic Control, vol. 47, no. 2, 398–403, 2002. DOI:  https://doi.org/10.1109/9.983388.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Yue, H. Wang. Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems. IEEE Transactions on Automatic Control, vol. 48, no. 1, 118–122, 2003. DOI:  https://doi.org/10.1109/TAC.2002.806663.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Ren, J. Zhang, M. Jiang, M. Yu, J. Xu. Minimum (h, ϕ)-entropy control for non-Gaussian stochastic networked control systems and its application to a networked DC motor control system. IEEE Transactions on Control Systems Technology, vol. 23, no. 1, 406–411, 2015. DOI:  https://doi.org/10.1109/TCST.2014.2324978.CrossRefGoogle Scholar
  21. [21]
    J. H. Zhang, L. L. Du, M. F. Ren, G. L. Hou. Minimum error entropy filter for fault detection of networked control systems. Entropy, vol. 14, no. 3, 505–516, 2012. DOI:  https://doi.org/10.3390/e14030505.CrossRefzbMATHGoogle Scholar
  22. [22]
    L. Guo, H. Wang. Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Transactions on Automatic Control, vol. 51, no. 4, 695–700, 2006. DOI:  https://doi.org/10.1109/TAC.2006.872771.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L. Guo, L. P. Yin, H. Wang, T. Y. Chai. Entropy optimization filtering for fault isolation of nonlinear non-Gaussian stochastic systems. IEEE Transactions on Automatic Control, vol. 54, no. 4, 804–810, 2009. DOI:  https://doi.org/10.1109/TAC.2008.2009599.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Guo, H. Wang, T. Chai. Fault detection for non-linear non-Gaussian stochastic systems using entropy optimization principle. Transactions of the Institute of Measurement and Control, vol. 28, no. 2, 145–161, 2006. DOI:  https://doi.org/10.1191/0142331206tm169oa.CrossRefGoogle Scholar
  25. [25]
    L. N. Yao, J. F. Qin, H. Wang, B. Jiang. Design of new fault diagnosis and fault tolerant control scheme for non-Gaussian singular stochastic distribution systems. Automatica, vol. 48, no. 9, 2305–2313, 2012. DOI:  https://doi.org/10.1016/j.automatica.2012.06.036.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    . D. Yang, A. Armaou. Feedback control of semi-linear distributed parameter systems using advanced pod method. In Proceedings of the 54th IEEE Conference on Decision and Control, IEEE, Osaka, Japan, pp. 4680–4687, 2015. DOI:  https://doi.org/10.1109/CDC.2015.7402949.Google Scholar
  27. [27]
    Q. C. Zhang, L. Hu, J. Gow. Output feedback stabilization for dynamic MIMO semi-linear stochastic systems with output randomness attenuation. In Proceedings of the 24th International Conference on Automation and Computing, IEEE, Newcastle upon Tyne, UK, pp. 1–6, 2018. DOI:  https://doi.org/10.23919/IConAC.2018.8748997.
  28. [28]
    Q. C. Zhang, A. P. Wang. Decoupling control in statistical sense: Minimised mutual information algorithm. International Journal of Advanced Mechatronic Systems, vol. 7, no. 2, 61–70, 2016. DOI:  https://doi.org/10.1504/IJAMECHS.2016.082625.CrossRefGoogle Scholar
  29. [29]
    J. Bao, H. Yue, W. E. Leithead, J. Q. Wang. Feedforward control for wind turbine load reduction with pseudo-LIDAR measurement. International Journal of Automation and Computing, vol. 15, no. 2, 142–155, 2018. DOI:  https://doi.org/10.1007/s11633-017-1103-x.CrossRefGoogle Scholar
  30. [30]
    P. Cross, X. D. Ma. Model-based and fuzzy logic approaches to condition monitoring of operational wind turbines. International Journal of Automation and Computing, vol. 12, no. 1, 25–34, 2015. DOI:  https://doi.org/10.1007/s11633-014-0863-9.CrossRefGoogle Scholar
  31. [31]
    F. Qin, Q. L. Zhang, W. X. Zhang, Y. Yang, J. L. Ding, X. W. Dai. Link quality estimation in industrial temporal fading channel with augmented Kalman filter. IEEE Transactions on Industrial Informatics, vol. 15, no. 4, 1936–1946, 2019. DOI:  https://doi.org/10.1109/TII.2018.2859919.CrossRefGoogle Scholar
  32. [32]
    C. G. Yang, G. Z. Peng, Y. N. Li, R. X. Cui, L. Cheng, Z. J. Li. Neural networks enhanced adaptive admittance control of optimized robot-environment interaction. IEEE Transactions on Cybernetics, vol. 49, no. 7, 2568–2579, 2019. DOI:  https://doi.org/10.1109/TCYB.2018.2828654.CrossRefGoogle Scholar
  33. [33]
    C. G. Yang, J. Luo, Y. P. Pan, Z. Liu, C. Y. Su. Personalized variable gain control with tremor attenuation for robot teleoperation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 10, 1759–1770, 2018. DOI:  https://doi.org/10.1109/TSMC.2017.2694020.CrossRefGoogle Scholar
  34. [34]
    R. Khasminskii. Stochastic Stability of Differential Equations, Berlin, Heidelberg, Germany: Springer, 2011. DOI:  https://doi.org/10.1007/978-3-642-23280-0.Google Scholar
  35. [35]
    T. M. Cover, J. A. Thomas. Elements of Information Theory, New York, USA: John Wiley & Sons, 2012.zbMATHGoogle Scholar
  36. [36]
    Y. Y. Zhou, Q. C. Zhang, H. Wang, P. Zhou, T. Y. Chai. EKF-based enhanced performance controller design for nonlinear stochastic systems. IEEE Transactions on Automatic Control, vol. 63, no. 4, 1155–1162, 2018. DOI:  https://doi.org/10.1109/TAC.2017.2742661.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Y. Y. Zhou, Q. C. Zhang, H. Wang. Enhanced performance controller design for stochastic systems by adding extra state estimation onto the existing closed loop control. In Proceedings of the UKACC 11th International Conference on Control, IEEE, Belfast, UK, pp. 1–6, 2016. DOI:  https://doi.org/10.1109/CONTROL.2016.7737531.Google Scholar
  38. [38]
    X. W. Dai, Z. W. Gao, T. Breikin, H. Wang. High-gain observer-based estimation of parameter variations with delay alignment. IEEE Transactions on Automatic Control, vol. 57, no. 3, 726–732, 2012. DOI:  https://doi.org/10.1109/TAC.2011.2169635.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. F. Ren, Q. C. Zhang, J. H. Zhang. An introductory survey of probability density function control. Systems Science & Control Engineering, vol. 7, no. 1, 158–170, 2019. DOI:  https://doi.org/10.1080/21642583.2019.1588804.MathSciNetCrossRefGoogle Scholar
  40. [40]
    Y. Liu, H. Wang, C. H. Hou. UKF based nonlinear filtering using minimum entropy criterion. IEEE Transactions on Signal Processing, vol. 61, no. 20, 4988–4999, 2013. DOI:  https://doi.org/10.1109/TSP.2013.2274956.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    Q. C. Zhang, A. P. Wang, H. Wang. Minimum mutual information control for multi-variable non-Gaussian stochastic systems. In Proceedings of International Conference on Advanced Mechatronic Systems, IEEE, Beijing, China, pp. 497–502, 2015. DOI:  https://doi.org/10.1109/ICAMechS.2015.7287161.Google Scholar
  42. [42]
    C. G. Yang, Y. M. Jiang, W. He, J. Na, Z. J. Li, B. Xu. Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Transactions on Industrial Electronics, vol. 65, no. 10, 8112–8123, 2018. DOI:  https://doi.org/10.1109/TIE.2018.2803773.CrossRefGoogle Scholar
  43. [43]
    X. W. Dai, Z. W. Gao, T. Breikin, H. Wang. Zero assignment for robust H 2/H fault detection filter design. IEEE Transactions on Signal Processing, vol. 57, no. 4, 1363–1372, 2009. DOI:  https://doi.org/10.1109/TSP.2008.2010598.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering and Sustainable DevelopmentDe Montfort UniversityLeicesterUK
  2. 2.School of Computer Science and InformaticsDe Montfort UniversityLeicesterUK

Personalised recommendations