Advertisement

Multi-objective Dimensional Optimization of a 3-DOF Translational PKM Considering Transmission Properties

  • Song LuEmail author
  • Yang-Min Li
  • Bing-Xiao Ding
Research Article

Abstract

Multi-objective dimensional optimization of parallel kinematic manipulators (PKMs) remains a challenging and worthwhile research endeavor. This paper presents a straightforward and systematic methodology for implementing the structure optimization analysis of a 3-prismatic-universal-universal (PUU) PKM when simultaneously considering motion transmission, velocity transmission and acceleration transmission. Firstly, inspired by a planar four-bar linkage mechanism, the motion transmission index of the spatial parallel manipulator is based on transmission angle which is defined as the pressure angle amongst limbs. Then, the velocity transmission index and acceleration transmission index are derived through the corresponding kinematics model. The multi-objective dimensional optimization under specific constraints is carried out by the improved non-dominated sorting genetic algorithm (NSGA II), resulting in a set of Pareto optimal solutions. The final chosen solution shows that the manipulator with the optimized structure parameters can provide excellent motion, velocity and acceleration transmission properties.

Keywords

Multi-objective optimization parallel kinematic manipulator transmission property non-dominated sorting genetic algorithm (NSGA II) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos.51575544 and 51275353), the Macao Science and Technology Development Fund (No.H0/2013/A3) and Research Committee of University of Macau (Nos.MYRG2015-00194-FST and MYRG203 (Y1-L4)-FST11-LYM).

References

  1. [1]
    G. Yu, L. P. Wang, J. Wu, D. Wang, C. J. Hu. Stiffness modeling approach for a 3-DOF parallel manipulator with consideration of nonlinear joint stiffness. Mechanism and Machine Theory, vol.123, pp.137–152, 2018. DOI:  https://doi.org/10.1016/j.mechmachtheory.2018.01.005.CrossRefGoogle Scholar
  2. [2]
    D. Liang, Y. M. Song, T. Sun, X. Y. Jin. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes. Mechanical Systems and Signal Processing, vol.103, pp.413–439, 2018. DOI:  https://doi.org/10.1016/j.ymssp.2017.10.004.CrossRefGoogle Scholar
  3. [3]
    T. Huang, Z. X. Li, M. Li, D. G. Chetwynd, C. M. Gosselin. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. Journal of Mechanical Design, vol. 126, no. 3, pp. 449–455, 2004. DOI:  https://doi.org/10.1115/1.1711822.CrossRefGoogle Scholar
  4. [4]
    T. Oiwa. Error compensation system for joints, links and machine frame of parallel kinematics machines. The International Journal of Robotics Research, vol.24, no.12, pp.1087–1102, 2005. DOI:  https://doi.org/10.1177/0278364905060149.CrossRefGoogle Scholar
  5. [5]
    L. J. Puglisi, R. J. Saltaren, H. A. Moreno, P. F. Cárdenas, C. Garcia, R. Aracil. Dimensional synthesis of a spherical parallel manipulator based on the evaluation of global performance indexes. Robotics and Autonomous Systems, vol.60, no.8, pp.1037–1045, 2012. DOI:  https://doi.org/10.1016/j.robot.2012.05.013.CrossRefGoogle Scholar
  6. [6]
    D. Corbel, O. Company, S. Krut, F. Pierrot. Enhancing PKM accuracy by separating actuation and measurement: A 3DOF case study. Journal of Mechanisms and Robotics, vol.2, no.3, Article number 031008, 2010 DOI:  https://doi.org/10.1115/1.4001779.
  7. [7]
    C. M. Gosselin, J. Angeles. A global performance index for the kinematic optimization of robotic manipulators. Journal of Mechanical Design, vol.113, no.3, pp.220–226, 1991. DOI:  https://doi.org/10.1115/1.2912772.CrossRefGoogle Scholar
  8. [8]
    M. Mazare, M. Taghizadeh, M. R. Najafi. Kinematic analysis and design of a 3-DOF translational parallel robot. International Journal of Automation and Computing, vol.14, no.4, pp.432–441, 2017. DOI:  https://doi.org/10.1007/sll633-017-1066-y.CrossRefGoogle Scholar
  9. [9]
    C. Chen, J. Angeles. Generalized transmission index and transmission quality for spatial linkages. Mechanism and Machine Theory, vol.42, no.9, pp.1225–1237, 2007. DOI:  https://doi.org/10.1016/j.mechmachtheory.2006.08.001.CrossRefzbMATHGoogle Scholar
  10. [10]
    D. Chablat, P. Wenger. Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the Orthoglide. IEEE Transactions on Robotics and Automation, vol.19, no.3, pp.403–410, 2003. DOI:  https://doi.org/10.1109/TRA.2003.810242.CrossRefGoogle Scholar
  11. [11]
    Y. J. Zhao. Singularity, isotropy, and velocity transmission evaluation of a three translational degrees-of-freedom parallel robot. Robotica, vol.31, no.2, pp.193–202, 2013. DOI:  https://doi.org/10.1017/S0263574712000197.CrossRefGoogle Scholar
  12. [12]
    J. Wu, B. B. Zhang, L. P. Wang. A measure for evaluation of maximum acceleration of redundant and nonredundant parallel manipulators. Journal of Mechanisms and Robotics, vol.8, no.2, Article number 021001, 2016. DOI:  https://doi.org/10.1115/1.4031500.
  13. [13]
    R. S. Ball. A Treatise on the Theory of Screws, Cambridge, USA: Cambridge Universit Press, 1990.zbMATHGoogle Scholar
  14. [14]
    J. S. Wang, C. Wu, X. J. Liu. Performance evaluation of parallel manipulators: Motion/force transmissibility and its index. Mechanism and Machine Theory, vol.45, no.10, pp.1462–1476, 2010. DOI:  https://doi.org/10.1016/j.mechmachtheory.2010.05.001.CrossRefzbMATHGoogle Scholar
  15. [15]
    M. J. Tsai, H. W. Lee. Generalized evaluation for the transmission performance of mechanisms. Mechanism and Machine Theory, vol.29, no.4, pp.607–618, 1994. DOI:  https://doi.org/10.1016/0094-114X(94)90098-1.CrossRefGoogle Scholar
  16. [16]
    Y. Takeda, H. Funabashi, H. Ichimaru. Development of spatial in-parallel actuated manipulators with six degrees of freedom with high motion transmissibility. JSME International Journal Series C, vol.40, no.2, pp.299–308, 1997. DOI:  https://doi.org/10.1299/jsmec.40.299.CrossRefGoogle Scholar
  17. [17]
    Y. J. Zhao. Dynamic optimum design of a three translational degrees of freedom parallel robot while considering anisotropic property. Robotics and Computer-Integrated Manufacturing, vol.29, no.4, pp.100–112, 2013. DOI: https://doi.org/10.1016/j.rcim.2012.11.004.CrossRefGoogle Scholar
  18. [18]
    L. M. Zhang, J. P. Mei, X. M. Zhao, T. Huang. Dimensional synthesis of the Delta robot using transmission angle constraints. Robotica, vol.30, no.3, pp.343–349, 2012. DOI:  https://doi.org/10.1017/S0263574711000622.CrossRefGoogle Scholar
  19. [19]
    T. Huang, M. X. Wang, S. F. Yang, T. Sun, D. G. Chetwynd, F. G. Xie. Force/motion transmissibility analysis of six degree of freedom parallel mechanisms. Journal of Mechanisms and Robotics, vol.6, no.3, Article number 031010, 2014. DOI:  https://doi.org/10.1115/1.4026631.
  20. [20]
    H. Q. Zhang, H. R. Fang, B. S. Jiang. Motion-force transmissibility characteristic analysis of a redundantly actuated and overconstrained parallel machine. International Journal of Automation and Computing, vol.16, no.2, pp.150–162, 2019. DOI:  https://doi.org/10.1007/sll633-018-1156-5.CrossRefGoogle Scholar
  21. [21]
    H. Q. Zhang, H. R. Fang, B. S. Jiang, S. G. Wang. Dynamic performance evaluation of a redundantly actuated and over-constrained parallel manipulator. International Journal of Automation and Computing, t. b. published. DOI:  https://doi.org/10.1007/sll633-018-1147-6.
  22. [22]
    Y. J. Zhao. Dimensional synthesis of a three translational degrees of freedom parallel robot while considering kinematic anisotropic property. Robotics and Computer-Integrated Manufacturing, vol.29, no.1, pp.169–179, 2013. DOI:  https://doi.org/10.1016/j.rcim.2012.05.002.CrossRefGoogle Scholar
  23. [23]
    O. Altuzarra, A. Hernandez, O. Salgado, J. Angeles. Multiobjective optimum design of a symmetric parallel schönflies-motion generator. Journal of Mechanical Design, vol.131, no. 3, Article number 031002, 2009. DOI: https://doi.org/10.1115/1.3066659.
  24. [24]
    M. Stock, K. Miller. Optimal kinematic design of spatial parallel manipulators: Application to linear delta robot. Journal of Mechanical Design, vol.125, no.2, pp.292–301, 2003. DOI:  https://doi.org/10.1115/1.1563632.CrossRefGoogle Scholar
  25. [25]
    Y. Yun, Y. M. Li. Optimal design of a 3-PUPU parallel robot with compliant hinges for micromanipulation in a cubic workspace. Robotics and Computer-integrated Manufacturing, vol.27, no.6, pp.977–985, 2011. DOI:  https://doi.org/10.1016/j.rcim.2011.05.001.CrossRefGoogle Scholar
  26. [26]
    Z. B. Li, Y. J. Lou, Y. S. Zhang, B. Liao, Z. X. Li. Typ. synthesis, kinemati. analysis, and optimal design of a novel class of schönflies-motion parallel manipulators. IEEE Transactions on Automation Science and Engineering, vol.10, no.3, pp.674–686, 2013. DOI:  https://doi.org/10.1109/TASE.2012.2206023.CrossRefGoogle Scholar
  27. [27]
    K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, vol. 7,no. 3, pp. 205–230, 1999. DOI:  https://doi.org/10.1162/evco.1999.7.3.205.MathSciNetCrossRefGoogle Scholar
  28. [28]
    Z. Gao, D. Zhang, Y. J. Ge. Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. Robotics and Computer-Integrated Manufacturing, vol. 26,no. 2, pp. 180–189, 2010. DOI:  https://doi.org/10.1016/j.rcim.2009.07.002.CrossRefGoogle Scholar
  29. [29]
    D. Zhang, Z. Gao. Forwar kinematics, performanc analysis, and multi-objective optimization of a bio-inspired parallel manipulator. Robotics and Computer-integrated Manufacturing, vol.28, no.4, pp.484–492, 2012. DOI:  https://doi.org/10.1016/j.rcim.2012.01.003.CrossRefGoogle Scholar
  30. [30]
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol.6, no.2, pp.182–197, 2002. DOI:  https://doi.org/10.1109/4235.996017.CrossRefGoogle Scholar
  31. [31]
    H. Li, Q. F. Zhang. Multiobjective optimization problems with complicated paret sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, vol. 13,no. 2, pp. 284–302, 2009. DOI:  https://doi.org/10.1109/TEVC.2008.925798.CrossRefGoogle Scholar
  32. [32]
    S. Lu, Y. M. Li. Dynamic analysis of a 3-DOF 3-PUU parallel manipulator based on the principle of virtual work. In Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, IEE. Busan, Sout. Korea, pp., 2015. DOI:  https://doi.org/10.1109/AIM.2015.7222744.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electromechanical EngineeringUniversity of MacauTaipa, MacaoChina
  2. 2.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong KongChina
  3. 3.Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical SystemTianjin University of TechnologyTianjinChina

Personalised recommendations