Advertisement

Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes

  • Horacio Coral-EnriquezEmail author
  • Santiago Pulido-Guerrero
  • John Cortés-Romero
Research Article

Abstract

In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane, and compared with other relevant active disturbance rejection control (ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.

Keywords

Active disturbance rejection control (ADRC) extended state observer (ESO) tower-crane control resonant observer disturbance observer linear matrix inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Sun Y. Fang X. Zhang Y. Yuan. Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory & Applications, vol. 6, no. 10, pp. 1410–1423, 2012. DOI: 10.1049/iet-cta.2011.0587.MathSciNetCrossRefGoogle Scholar
  2. [2]
    X. B. Zhang, Y. C. Fang, N. Sun. Minimum-time trajectory planning for underactuated overhead crane systems with state and control constraints. IEEE Transactions on Indus trial Electronics, vol. 61, no. 12, pp. 6915–6925, 2014. DOI: 10.1109/TIE.2014.2320231.CrossRefGoogle Scholar
  3. [3]
    N. Sun, Y. M. Wu, H. Chen, Y. C. Fang. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments. Mechanical Syste ms and Signal Processing, vol. 102, pp. 87–101, 2018. DOI: 10.1016/j.ymssp.2017.09.027.CrossRefGoogle Scholar
  4. [4]
    W. Sridokbuap S. Nundrakwang T. Benjanarasuth J. Ngamwiwit, N Komne -PD and PD controlers de signed by CRA for overhead crane system. In Proceedings of International Conference on Control, Automation and Systems, IEEE Seou, South Korea pp. 326–330, 2007. DOI: 10.1109/ICCAS.2007.4406931.Google Scholar
  5. [5]
    M. I. Solihin, Wahyudi, A. Legowo. Fuzzy-tuned PID anti-swing control of automatic gantry crane. Journal of Vibration and Control, vol. 16, no 1, pp 127–145, 2010 DOI 10.1177/1077546309103421.CrossRefzbMATHGoogle Scholar
  6. [6]
    Y. Z. Qian, Y. C. Fang, T. Yang. An energy-based nonlinear coupling control for offshore ship-mounted cranes. International Journal of Automation and Computing, vol. 15, no. 5, pp. 570–581, 2018. DOI: 10.1007/s11633-018-1134-y.CrossRefGoogle Scholar
  7. [7]
    M. H. Zhang, X. Ma, X. W. Rong, X. C. Tian, Y. B. Li. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and externa disturbances Mechanical Systems and Signal Processing, vol. 76–77, pp 15–32, 2016 DOI: 10.1016/j.ymssp.2016.02.013.CrossRefGoogle Scholar
  8. [8]
    K. L. Sorensen, W. Singhose, S. Dickerson. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Engineering Practice, vol. 15, no. 7, pp. 825–837, 2007. DOI: 10.1016/j.conengprac.2006. 03.005.CrossRefGoogle Scholar
  9. [9]
    S. Mahjoub, F. Mnif, N. Derbel. Second-order sliding mode approaches for the control of a class of underactuated systems. International Journal of Automation and Computing, vol. 12, no. 2, pp. 134–141, 2015. DOI: 10.1007/s11633-015-0880-3.CrossRefGoogle Scholar
  10. [10]
    N. Sun, Y. C. Fang, H. Chen. A continuous robust anti-swing trackng contro scheme for underactuated crane systems with experimental verification. Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 4, Article number 041002, 2016. DOI: 10.1115/1.4032460. DOI: 10.1115/1.4032460.Google Scholar
  11. [11]
    G. Hilhorst, G. Pipeleers, W. Michiels, R. C. L. F. Oliveira, P. L. D. Peres, J. Swevers. Reduced-order H 2/H control of discrete-time LPV systems with experimental validation on an overhead crane test setup. In Proceedings of American Control Conference, IEEE Chicago USA pp. 125–130, 2015. OI: 0.1109/ACC.2015.7170723.Google Scholar
  12. [12]
    D. Kim, Y. Park, Y. S. Park, S. Kwon, E. Kim. Dual stage trolley control system for anti-swing control of mobile harbor crane. In Proceedings of the 11th International Conference on Control, Automation and Systems, EEE, Gyeonggi-do, South Korea, pp. 420–423, 2011.Google Scholar
  13. [13]
    M. Adeli, H. Zarabadipour, S. H. Zarabadi, M. A. Shoore-hdeli. Ani-swing onrol or a doubependuumtype overhead crane via parallel distributed fuzzy LQR controller combined with genetic fuzzy rule set selection. In Proceedings of IEEE International Conference on Control System, Computing and Engineering, Pnang Malaysia, pp. 306–311, 2011. DOI: 10.1109/ICCSCE.2011.6190542.Google Scholar
  14. [14]
    S. Sano, H. M. Ouyang, H. Yamashita, N. Uchiyama. LMI approach to robust contro of rotary cranes under load sway frequency variance. Journal of System Design and Dynamics, vol. 5, no. 7, pp. 1402–1417, 2011. DOI: 10.1299/ jsdd.5.1402.CrossRefGoogle Scholar
  15. [15]
    S. Sano, H. M. Ouyang, N. Uchiyama. Robust control of rotary cranes under rope length variance via LMI optimization. In Proceedings of IEEE International Conference on Industrial Technology, Athens, Greece, pp. 846–851, 2012. DOI: 10.1109/ICIT.2012.6210044.Google Scholar
  16. [16]
    T. Cai, H. Zhang, L. Gu, Z. Q. Gao. On active disturbance rejection control of the payload position for gantry cranes. In Proceedings of American Control Conference, IEEE Washington, USA, pp. 425–430, 2013. DOI: 10.1109/ACC.2013.6579874.Google Scholar
  17. [17]
    J. Q. Han. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009. DOI: 10.1109/TIE.2008.2011621.CrossRefGoogle Scholar
  18. [18]
    Z. Q. Gao. Active disturbance rejection control: A paradigm shift in feedback control system design. In Proceedings of American Control Conference, IEEE, Minneapolis, USA, 2006. DOI: 10.1109/ACC.2006.1656579.Google Scholar
  19. [19]
    M. Baquero-Suárez, J. Cortés-Romero, J. Arcos-Legarda, H. Coral-Enriquez. A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody System Dynamics, vol. 45, no. 1, pp. 7–35, 2019. DOI: 10.1007/s11044-018-9614-y.MathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Tamayo-Leon, S. Pulido-Guerrero, H. Coral-Enriquez. Self-stabilization of a riderless bicycle with a control moment gyroscope via model-based active disturbance rejection control. In Proceedings of the 3rd Colombian Conference on Automatic Control, IEEE, Cartagena, Colombia, pp. 1–6, 2017. DOI: 10.1109/CCAC.2017.8276434.Google Scholar
  21. [21]
    A. Beltran-Pulido, J. Cortes-Romero, H. Coral-Enriquez. Robust active disturbance rejection control for LVRT capability enhancement of DFIG-based wind turbines. Control Engineering Practice, vol. 77, pp. 174–189, 2018. DOI: 10.1016/j.conengprac.2018.06.001.CrossRefGoogle Scholar
  22. [22]
    L. Sun, Q. S. Hua, D. H. Li, L. Pan, Y. L. Xue, K. Y. Lee. Direct energy balance based active disturbance rejection control for coal-fired power plant. ISA Transactions, vol. 70, pp. 486–493, 2017. DOI: 10.1016/j.isatra.2017.06.003.CrossRefGoogle Scholar
  23. [23]
    Z. Q. Pu, R. Y. Yuan, X. M. Tan, J. Q. Yi. An integrated approach to hypersonic entry attitude control. International Journal of Automation and Computing, vol. 11, no. 1, pp. 39–50, 2014. DOI: 10.1007/s11633-014-0764-y.CrossRefGoogle Scholar
  24. [24]
    H. Coral-Enriquez, S. Pulido-Guerrero. Atenuaciön de efectos pendulares en grüas-torre usando control por re-chazo activo de perturbaciones en tiempo discreto con ob-servador resonante. DYNA, vol. 85, no. 204, pp. 65–75, 2018. (in Spanish) DOI: 10.15446/dyna.v85n204.63245.CrossRefGoogle Scholar
  25. [25]
    R. Madoński, P. Herman. Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, vol. 56, pp. 18–27, 2015. DOI: 10.1016/j.isatra. 2014.11.008.CrossRefGoogle Scholar
  26. [26]
    M. R. Stanković, M. R. Rapaić, S. M. Manojlović, S. T. Mitrović, S. M. Simić, M. Naumović. Optimised active disturbance rejection motion control with resonant extended state observer. International Journal of Control, published online. DOI: 10.1080/00207179.2017.1414308.Google Scholar
  27. [27]
    J. Cortés-Romero, G. A. Ramos, H. Coral-Enriquez. Generalized proportional integral control for periodic signals under active disturbance rejection approach. ISA Transactions, vol. 53, no. 6, pp. 1901–1909, 2014. DOI: 10.1016/j.isatra.2014.07.001.CrossRefGoogle Scholar
  28. [28]
    H. Benaroya, M. L. Nagurka, S. M. Han. Mechanical Vibration: Analysis, Uncertainties, and Control, 4th ed., New York, USA: CRC Press, 2017.CrossRefGoogle Scholar
  29. [29]
    B. A. Francis, W. M. Wonham. The internal model principle of control theory. Automatica, vol. 12, no. 5, pp. 457–465, 1976. DOI: 10.1016/0005-1098(76)90006-6.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    G. A. Parker, C. D. Johnson. Improved speed regulation and mitigation of drive-train torsion fatigue in flexible wind turbines, using disturbance utilization control: Part two. In Proceedings of the 41st Southeastern Symposium on Sy stem Theory, IEEE, Tullahoma, pp. 177–183, 2009. DOI: 10.1109/SSST.2009.4806790.Google Scholar
  31. [31]
    S. Zhao, Z. Q. Gao. An active disturbance rejection based approach to vibration suppression in two-inertia systems. In Proceedings of American Control Con ference, IEEE, Baltimore, USA, pp. 1520–1525, 2010. DOI: 10.1109/ACC. 2010.5531284.Google Scholar
  32. [32]
    W. C. Xue, Y. Huang. On performance analysis of ADRC for nonlinear uncertain systems with unknown dynamics and discontinuous disturbances. In Proceedings of the 32nd Chinese Control Conference, IEEE, Xi'an, China, pp. 1102–1107, 2013.Google Scholar
  33. [33]
    S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, Philadelphia, USA: SIAM, 1994.CrossRefzbMATHGoogle Scholar
  34. [34]
    J. Löfberg. Automatic robust convex programming. Optimization Methods and Software, vol. 27, no. 1, pp. 115–129, 2012. DOI: 10.1080/10556788.2010.517532.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. F. Franklin, J. D. Powell, M. L. Workman. Digital Control of Dynamic Systems, 3rd ed., Half Moon Bay, USA: Ellis-Kagle Press, 2006.zbMATHGoogle Scholar
  36. [36]
    J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, New Orleans, USA, pp. 284–289, 2004. DOI: 10.1109/CACSD. 2004.1393890.Google Scholar

Copyright information

© Institute of Auomaion Chinese Academy of Scenes and Springer-Verlag Gmbh Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Ingeniería Mecatrónica, Facultad de IngenieríaUniversidad de San Buenaventura sede BogotáBogotáColombia
  2. 2.Departamento de Ingeniería Eléctrica y Electrónica, Facultad de IngenieríaUniversidad Nacional de Colombia sede BogotáBogotáColombia

Personalised recommendations