Dual-modal Physiological Feature Fusion-based Sleep Recognition Using CFS and RF Algorithm

  • Bing-Tao ZhangEmail author
  • Xiao-Peng Wang
  • Yu Shen
  • Tao Lei
Research Article


Research has demonstrated a significant overlap between sleep issues and other medical conditions. In this paper, we consider mild difficulty in falling asleep (MDFA). Recognition of MDFA has the potential to assist in the provision of appropriate treatment plans for both sleep issues and related medical conditions. An issue in the diagnosis of MDFA lies in subjectivity. To address this issue, a decision support tool based on dual-modal physiological feature fusion which is able to automatically identify MDFA is proposed in this study. Special attention is given to the problem of how to extract candidate features and fuse dual-modal features. Following the identification of the optimal feature set, this study considers the correlations between each feature and class and evaluates correlations between the inter-modality features. Finally, the recognition accuracy was measured using 10-fold cross validation. The experimental results for our method demonstrate improved performance. The highest recognition rate of MDFA using the optimal feature set can reach 96.22%. Based on the results of current study, the authors will, in projected future research, develop a real-time MDFA recognition system.


Feature fusion mild difficulty in falling asleep (MDFA) decision support tool sleep issues optimal feature set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by National Natural Science Foundation of China (Nos. 61761027 and 61461025), the Yong Scholar Fund of Lanzhou Jiaotong University (No. 2016004) and the Teaching Reform Project of Lanzhou Jiaotong University (No. JGY201841).


  1. [1]
    K. J. Horsley, C. R. Rouleau, S. N. Garland, C. Samuels, S. G. Aggarwal, J. A. Stone, R. Arena, T. S. Campbell. Insomnia symptoms and heart rate recovery among patients in cardiac rehabilitation. Journal of Behavioral Medicine, vol. 39, no. 4, pp. 642–651, 2016. DOI: 10.1007/s10865-016-9725-y.CrossRefGoogle Scholar
  2. [2]
    M. W. Johns. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, vol. 14, no. 6, pp. 540–545, 1991. DOI: 10.1093/sleep/14.6.540.CrossRefGoogle Scholar
  3. [3]
    A. J. Stunkard, M. S. Faith, K. C. Allison. Depression and obesity. Biological Psychiatry, vol. 54, no. 3, pp. 330–337, 2003. DOI: 10.1016/S0006-3223(03)00608-5.CrossRefGoogle Scholar
  4. [4]
    E. E. Tripoliti, D. I. Fotiadis, M. Argyropoulou. A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artificial Intelligence in Medicine, vol. 53, no. 1, pp. 35–45, 2011. DOI: 10.1016/j.artmed.2011.05.005.CrossRefGoogle Scholar
  5. [5]
    T. P. Exarchos, A. T. Tzallas, D. Baga, D. Chaloglou, D. I. Fotiadis, S. Tsouli, M. Diakou, S. Konitsiotis. Using partial decision trees to predict Parkinson's symptoms: A new approach for diagnosis and therapy in patients suffering from Parkinson's disease. Computers in Biology and Medicine, vol. 42, no. 2, pp. 195–204, 2012. DOI: 10.1016/j. compbiomed.2011.11.008.CrossRefGoogle Scholar
  6. [6]
    M. M. Ohayon. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Medicine Reviews, vol. 6, no. 2, pp. 97–111, 2002. DOI: 10.1053/smrv.2002.0186.CrossRefGoogle Scholar
  7. [7]
    A. Ylikoski, K. Martikainen, M. Sieminski, M. Partinen. Sleeping difficulties and health-related quality of life in Parkinson's disease. Acta Neurologica Scandinavica, vol. 135, no. 4, pp. 459–468, 2017. DOI: 10.1111/ane. 12620.CrossRefGoogle Scholar
  8. [8]
    A. Bellatorre, K. Choi, D. Lewin, D. Haynie, B. Simons-Morton. Relationships between smoking and sleep problems in black and white adolescents. Sleep, vol. 40, no. 1, Article number zsw031, 2017. DOI: 10.1093/sleep/zsw031.Google Scholar
  9. [9]
    A. A. Gamaldo, J. C. Allaire, K. E. Whitfield. The relationship between reported problems falling asleep and cognition among African American elderly. Research on Aging, vol. 30, no. 6, pp. 752–767, 2008. DOI: 10.1177/ 0164027508322576.CrossRefGoogle Scholar
  10. [10]
    W. C. Choo, W. W. Lee, V. Venkatraman, F. S. Sheu, M. W. L. Chee. Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage, vol. 25, no. 2, pp. 579–587, 2005. DOI: 10.1016/j.neuroimage.2004.11. 029.CrossRefGoogle Scholar
  11. [11]
    L. Leigh, I. L. Hudson, J. E. Byles. Sleeping difficulty, disease and mortality in older women: A latent class analysis and distal survival analysis. Journal of Sleep Research, vol. 24, no. 6, pp. 648–657, 2015. DOI: 10.1111/jsr.12324.CrossRefGoogle Scholar
  12. [12]
    O. P. Almeida, H. Alfonso, B. B. Yeap, G. Hankey, L. Flicker. Complaints of difficulty to fall asleep increase the risk of depression in later life: The health in men study. Journal of Affective Disorders, vol. 134, no. 1–3, pp. 208–216, 2011. DOI: 10.1016/j.jad.2011.05.045.CrossRefGoogle Scholar
  13. [13]
    J. D. Edinger, M. H. Bonnet, R. R. Bootzin, K. Doghramji, C. M. Dorsey, C. A. Espie, A. O. Jamieson, W. V. McCall, C. M. Morin, E. J. Stepanski. Derivation of research diagnostic criteria for insomnia: Report of an American academy of sleep medicine work group. Sleep, vol. 27, no. 8, pp. 1567–1596, 2004. DOI: 10.1093/sleep/27.8.1567.CrossRefGoogle Scholar
  14. [14]
    C. M. Jung, J. M. Ronda, C. A. Czeisler, K. P. Jr. Wright. Comparison of sustained attention assessed by auditory and visual psychomotor vigilance tasks prior to and during sleep deprivation. Journal of Sleep Research, vol. 20, no. 2, pp. 348–355, 2011. DOI: 10.1111/j.1365-2869.2010. 00877.x.CrossRefGoogle Scholar
  15. [15]
    S. W. Lockley, E. E. Evans, F. A. Scheer, G. C. Brainard, C. A. Czeisler, D. Aeschbach. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, vol. 29, no. 2, pp. 161–168, 2006. DOI: 10.1093/sleep/29. 2.161.Google Scholar
  16. [16]
    B. T. Zhang, T. Lei, H. Liu, H. S. Cai. EEG-based automatic sleep staging using ontology and weighting feature analysis. Computational and Mathematical Methods in Medicine, vol. 2018, Article number 6534041, 2018. DOI: 10.1155/2018/6534041.Google Scholar
  17. [17]
    S. Kinreich, I. Podlipsky, S. Jamshy, N. Intrator, T. Hendler. Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG neurofeedback. Neuroimage, vol. 97, pp. 19–28, 2014. DOI: 10.1016/j. neuroimage.2014.04.044.CrossRefGoogle Scholar
  18. [18]
    W. Dement, N. Kleitman. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalography and Clinical Neurophysiology, vol. 9, no. 4, pp. 673–690, 1957. DOI: 10.1016/0013-4694(57)90088-3.CrossRefGoogle Scholar
  19. [19]
    S. F. Liang, C. E. Kuo, F. Z. Shaw, Y. H. Chen, C. H. Hsu, J. Y. Chen. Combination of expert knowledge and a genetic fuzzy inference system for automatic sleep staging. IEEE Transactions on Biomedical Engineering, vol. 63, no. 10, pp. 2108–2118, 2016. DOI: 10.1109/TBME.2015. 2510365.CrossRefGoogle Scholar
  20. [20]
    O. Tsinalis, P. M. Matthews, Y. K. Guo. Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Annals of Biomedical Engineering, vol. 44, no. 5, pp. 1587–1597, 2016. DOI: 10.1007/s10439-015-1444-y.CrossRefGoogle Scholar
  21. [21]
    B. Sen, M. Peker, A. Cavusoglu, F. V. Celebi. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of Medical Systems, vol. 38, no. 3, pp. 667–687, 2014. DOI: 10.1007/s10916-014-0018-0.CrossRefGoogle Scholar
  22. [22]
    Y. L. Hsu, Y. T. Yang, J. S. Wang, C. Y. Hsu. Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing, vol. 104, pp. 105–114, 2013. DOI: 10.1016/j.neucom.2012.11.003.CrossRefGoogle Scholar
  23. [23]
    S. F. Liang, C. E. Kuo, Y. H. Hu, Y. H. Pan, Y. H. Wang. Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 6, pp. 1649–1657, 2012. DOI: 10.1109/TIM. 2012.2187242.CrossRefGoogle Scholar
  24. [24]
    H. Akaike. Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, vol. 21, no. 1, pp. 243–247, 1969. DOI: 10.1007/BF02532251.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    I. J. Rampil. A primer for EEG signal processing in anesthesia. Anesthesiology, vol. 89, no. 4, pp. 980–1002, 1998. DOI: 10.1097/00000542-199810000-00023.CrossRefGoogle Scholar
  26. [26]
    T. Cecchin, R. Ranta, L. Koessler, O. Caspary, H. Vespignani, L. Maillard. Seizure lateralization in scalp EEG using Hjorth parameters. Clinical Neurophysiology, vol. 121, no. 3, pp. 290–300, 2010. DOI: 10.1016/j.clinph.2009.10. 033.CrossRefGoogle Scholar
  27. [27]
    Z. Y. Huang, H. Y. Zhu, J. T. Zhou, X. Peng. Multiple marginal fisher analysis. IEEE Transactions on Industrial Electronics, to be published. DOI: 10.1109/TIE.2018. 2870413.Google Scholar
  28. [28]
    T. Lei, X. H. Jia, Y. N. Zhang, L. F. He, H. Y. Meng, A. K. Nandi. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 3027–3041, 2018. DOI: 10. 1109/TFUZZ.2018.2796074.CrossRefGoogle Scholar
  29. [29]
    M. A. Hall. Correlation-based Feature Selection for Machine Learning, Ph. D. dissertation, The University of Waikato, New Zealand, 1999.Google Scholar
  30. [30]
    A. Cutler, D. R. Cutler, J. R. Stevens. Random forests. In Ensemble Machine Learning, C. Zhang, Y. Q. Ma, Eds., Boston, USA: Springer, pp. 157–176, 2004.Google Scholar
  31. [31]
    S. Lee. Using Weka in Matlab, [Online], Available: 0120-using-weka-in-matlab, January 20, 2019.Google Scholar
  32. [32]
    L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, H. Dickhaus. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 10–19, 2012. DOI: 10.1016/j.cmpb.2011.11.005.CrossRefGoogle Scholar
  33. [33]
    A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley. PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, vol. 101, no. 23, pp. E215–E220, 2000.Google Scholar
  34. [34]
    L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, F. Chapotot. Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control, vol. 2, no. 3, pp. 171–179, 2007. DOI: 10.1016/j.bspc.2007.05.005.CrossRefGoogle Scholar
  35. [35]
    S. A. Imtiaz, Z. Jiang, E. Rodriguez-Villegas. An ultralow power system on chip for automatic sleep staging. IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 822–833, 2017. DOI: 10.1109/JSSC.2017.2647923.CrossRefGoogle Scholar
  36. [36]
    M. Diykh, Y. Li. Complex networks approach for EEG signal sleep stages classification. Expert Systems with Applications, vol. 63, pp. 241–248, 2016. DOI: 10.1016/j.eswa. 2016.07.004.CrossRefGoogle Scholar
  37. [37]
    J. A. Hobson. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects: A. Rechtschaffen and A. Kales (Editors). Electroencephalography and Clinical Neurophysiology, vol. 26, no. 6, Article number 644, 1969.CrossRefGoogle Scholar
  38. [38]
    C. Iber, S. Ancoli-Israel, A. L. Jr. Chesson, S. F. Quan. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester, USA: American Academy of Sleep Medicine, 2007.Google Scholar
  39. [39]
    I. Kononenko. Estimating attributes: Analysis and extesions of RELIEF. In Proceedings of European Conference on Machine Learning on Machine Learning, Springer, Catania, Italy, pp. 171–182, 1994.Google Scholar
  40. [40]
    J. Tang, S. Alelyani, H. Liu. Feature selection for classification: A review. Data Classification: Algorithms and Applications, vol. 98, no. 7, pp. 313–334, 2014.Google Scholar
  41. [41]
    M. Schwartz, M. Park, J. H. Phan, M. D. Wang. Integration of multimodal RNA-seq data for prediction of kidney cancer survival. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Washington, USA, pp. 1591–1595, 2015. DOI: 10.1109/BIBM.2015.7359913.Google Scholar
  42. [42]
    M. Goudjil, M. Koudil, M. Bedda, N. Ghoggali. A novel active learning method using SVM for text classification. International Journal of Automation and Computing, vol. 15, no. 3, pp. 290–298, 2018. DOI: 10.1007/s11633-015-0912-z.CrossRefGoogle Scholar
  43. [43]
    C. L. Zhang, Y. P. Xu, Z. J. Xu, J. He, J. Wang, J. H. Adu. A fuzzy neural network based dynamic data allocation model on heterogeneous multi-GPUs for large-scale computations. International Journal of Automation and Computing, vol. 15, no. 2, pp. 181–193, 2018. DOI: 10.1007/ s11633-018-1120-4.CrossRefGoogle Scholar
  44. [44]
    M. L. Green, P. D. Karp. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics, vol. 5, Article number 76, 2004. DOI: 10.1186/1471-2105-5-76.Google Scholar
  45. [45]
    A. A. B. Subramanian, S. Pramala, B. Rajalakshmi, R. Rajaram. Improving decision tree performance by exception handling. International Journal of Automation and Computing, vol. 7, no. 3, pp. 372–380, 2010. DOI: 10.1007/s11633-010-0517-5.CrossRefGoogle Scholar
  46. [46]
    X. W. Zhang, B. Hu, X. Ma, L. X. Xu. Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression. IEEE Transactions on Nanobioscience, vol. 14, no. 2, pp. 237–247, 2015. DOI: 10.1109/TNB.2015.2403274.CrossRefGoogle Scholar
  47. [47]
    H. Y. Zhu, R. Vial, S. J. Lu, X. Peng, H. Z. Fu, Y. H. Tian, X. B. Cao. Yotube: Searching action proposal via recurrent and static regression networks. IEEE Transactions on Image Processing, vol. 27, no. 6, pp. 2609–2622, 2018. DOI: 10.1109/TIP.2018.2806279.MathSciNetCrossRefGoogle Scholar
  48. [48]
    M. Shahin, B. Ahmed, S. T. B. Hamida, F. L. Mulaffer, M. Glos, T. Penzel. Deep learning and insomnia: Assisting clinicians with their diagnosis. IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 6, pp. 1546–1553, 2017. DOI: 10.1109/JBHI.2017.2650199.CrossRefGoogle Scholar
  49. [49]
    M. Shahin, L. Mulaffer, B. Ahmed. Two Stages Approach for Automatic Detection of Sleep Insomnia, [Online], Available:, 2018.Google Scholar
  50. [50]
    B. Hu, D. Majoe, M. Ratcliffe, Y. B. Qi, Q. L. Zhao, H. Peng, D. P. Fan, F. Zheng, M. Jackson, P. Moore. EEG-based cognitive interfaces for ubiquitous applications: Developments and challenges. IEEE Intelligent Systems, vol. 26, no. 5, pp. 46–53, 2011. DOI: 10.1109/MIS.2011.58.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringLanzhou Jiaotong UniversityLanzhouChina
  2. 2.Key Laboratory of Opto-technology and Intelligent Conrtol Ministry of EducationLanzhou Jiaotong UniverstiyLanzhouChina
  3. 3.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  4. 4.College of Electronical and Information EngineeringShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations