A Fault Tolerant Control Scheme Using the Feasible Constrained Control Allocation Strategy

  • Mehdi Naderi
  • Tor Arne Johansen
  • Ali Khaki SedighEmail author
Research Article


This paper investigates the necessity of feasibility considerations in a fault tolerant control system using the constrained control allocation methodology where both static and dynamic actuator constraints are considered. In the proposed feasible control al-location scheme, the constrained model predictive control (MPC) is employed as the main controller. This considers the admissible region of the control allocation problem as its constraints. Using the feasibility notion in the control allocation problem provides the main controller with information regarding the actuator′s status, which leads to closed loop system performance improvement. Several simulation examples under normal and faulty conditions are employed to illustrate the effectiveness of the proposed methodology. The main results clearly indicate that closed loop performance and stability characteristics can be significantly degraded by neglecting the actuat-or constraints in the main controller. Also, it is shown that the proposed strategy substantially enlarges the domain of attraction of the MPC combined with the control allocation as compared to the conventional MPC.


Control allocation feasibility fault tolerant control model predictive control domain of attraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partly supported by Research Council of Norway through the Centres of Excellence (No. 223254 NTNU-AMOS).


  1. [1]
    O. Harkegard. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, pp. 1295–1300, 2002. DOI: 10.1109/CDC.2002.1184694.Google Scholar
  2. [2]
    T. I. Fossen, T. A. Johansen. A survey of control allocation methods for ships and underwater vehicles. In Proceedings of the 14th Mediterranean Conference on Control and Automation, IEEE, Ancona, Italy, pp. 1–6, 2006. DOI: 10.1109/MED.2006.328749.Google Scholar
  3. [3]
    J. Jiang, X. Yu. Fault-tolerant control systems: A comparative study between active and passive approaches. Annual Reviews in Control, vol. 36, no. 1, pp. 60–72, 2012. DOI: 10.1016/j.arcontrol.2012.03.005.MathSciNetCrossRefGoogle Scholar
  4. [4]
    S. A. Lawal, J. Zhang. Actuator fault monitoring and fault tolerant control in distillation columns. International Journal of Automation and Computing, vol. 14, no. 1, pp. 80–92, 2017. DOI: 10.1007/s11633-016-1037-8.CrossRefGoogle Scholar
  5. [5]
    M. Y. Zhao, H. P. Liu, Z. J. Li, D. H. Sun. Fault tolerant control for networked control systems with packet loss and time delay. International Journal of Automation and Computing, vol. 8, no. 2, pp. 244–253, 2011. DOI: 10.1007/ s11633-011-0579-z.CrossRefGoogle Scholar
  6. [6]
    A. Casavola, E. Garone. Fault-tolerant adaptive control allocation schemes for overactuated systems. International Journal of Robust and Nonlinear Control, vol. 20, no. 17, pp. 1958–1980, 2010. DOI: 10.1002/rnc.1561.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Cristofaro, T. A. Johansen. Fault tolerant control allocation using unknown input observers. Automatica, vol. 50, no. 7, pp. 1891–1897, 2014. DOI: 10.1016/j.automatica. 2014.05.007.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Y. C. Jiang, Y. Yin, K. Okyay. Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond. IEEE Access, vol. 6, pp. 47374–47384, 2018. DOI: 10.1109/ACCESS.2018.2866403.CrossRefGoogle Scholar
  9. [9]
    T. A. Johansen, T. I. Fossen. Control allocation–A survey. Automatica, vol. 49, no. 5, pp. 1087–1103, 2013. DOI: 10.1016/j.automatica.2013.01.035.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Jin. Modified pseudoinverse redistribution methods for redundant controls allocation. Journal of Guidance, Control, and Dynamics, vol. 28, no. 5, pp. 1076–1079, 2005. DOI: 10.2514/1.14992.CrossRefGoogle Scholar
  11. [11]
    J. M. Buffington, D. F. Enns. Lyapunov stability analysis of daisy chain control allocation. Journal of Guidance, Control, and Dynamics, vol. 19, no. 6, pp. 1226–1230, 1996. DOI: 10.2514/3.21776.CrossRefzbMATHGoogle Scholar
  12. [12]
    W. C. Durham. Constrained control allocation. Journal of Guidance, Control, and Dynamics, vol. 16, no. 4, pp. 717–725, 1993. DOI: 10.2514/3.21072.CrossRefGoogle Scholar
  13. [13]
    M. Bodson. Evaluation of optimization methods for control allocation. Journal of Guidance, Control, and Dynamics, vol. 25, no. 4, pp. 703–711, 2002. DOI: 10.2514/2.4937.CrossRefGoogle Scholar
  14. [14]
    T. A. Johansen, T. I. Fossen, P. Tondel. Efficient optimal constrained control allocation via multiparametric programming. Journal of Guidance, Control, and Dynamics, vol. 28, no. 3, pp. 506–515, 2005. DOI: 10.2514/1.10780.CrossRefGoogle Scholar
  15. [15]
    M. Marwaha, J. Valasek. Fault-tolerant control allocation for Mars entry vehicle using adaptive control. International Journal of Adaptive Control and Signal Processing, vol. 25, no. 2, pp. 95–113, 2011. DOI: 10.1002/acs.1183.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Soylu, B. J. Buckham, R. P. Podhorodeski. A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation. Ocean Engineering, vol. 35, no. 16, pp. 1647–1659, 2008. DOI: 10.1016/j.oceaneng.2008.07.013.CrossRefGoogle Scholar
  17. [17]
    Y. M. Zhang, V. S. Suresh, B. Jiang, D. Theilliol. Reconfigurable control allocation against aircraft control effect-or failures. In Proceedings of IEEE International Conference on Control Applications, Singapore, Singapore, pp. 1197–1202, 2007. DOI: 10.1109/CCA.2007.4389398.Google Scholar
  18. [18]
    J. J. Burken, P. Lu, Z. L. Wu, C. Bahm. Two reconfigurable flight-control design methods: Robust servomechanism and control allocation. Journal of Guidance, Control, and Dynamics, vol. 24, no. 3, pp. 482–493, 2001. DOI: 10.2514/2.4769.CrossRefGoogle Scholar
  19. [19]
    S. S. Tohidi, A. K. Sedigh, D. Buzorgnia. Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space. International Journal of Robust and Nonlinear Control, vol. 26, no. 16, pp. 3541–3557, 2016. DOI: 10.1002/rnc.3518.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. T. Hamayun, C. Edwards, H. Alwi. Design and analysis of an integral sliding mode fault-tolerant control scheme. IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1783–1789, 2012. DOI: 10.1109/TAC.2011.2180090.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. S. Tohidi, Y. Yildiz, I. Kolmanovsky. Fault tolerant control for over-actuated systems: An adaptive correction approach. In Proceedings of American Control Conference, IEEE, Boston, USA, pp. 2530–2535, 2016. DOI: 10.1109/ACC.2016.7525297.Google Scholar
  22. [22]
    J. B. Davidson, F. J. Lallman, W. T. Bundick. Integrated reconfigurable control allocation. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, Montreal, Canada, 2001. DOI: 10.2514/ 6.2001-4083.Google Scholar
  23. [23]
    O. Harkegard. Dynamic control allocation using constrained quadratic programming. Journal of Guidance, Control, and Dynamics, vol. 27, no. 6, pp. 1028–1034, 2004. DOI: 10.2514/1.11607.CrossRefGoogle Scholar
  24. [24]
    Y. Luo, A. Serrani, S. Yurkovich, D. B. Doman, M. W. Oppenheimer, model predictive dynamic control allocation with actuator dynamics. In Proceedings of American Control Conference, IEEE, Boston, USA, pp. 1695–1700, 2004. DOI: 10.23919/ACC.2004.1386823.Google Scholar
  25. [25]
    M. Hanger, T. A. Johansen, G. K. Mykland, A. Skullestad, Dynamic model predictive control allocation using CVX-GEN. In Proceedings of the 9th IEEE International Conference on Control and Automation, Santiago, Chile, pp. 417–422, 2011. DOI: 10.1109/ICCA.2011.6137940.Google Scholar
  26. [26]
    W. C. A. Kishore, S. Sen, G. Ray, T. K. Ghoshal. Dynamic control allocation for tracking time-varying control demand. Journal of Guidance, Control, and Dynamics, vol. 31, no. 4, pp. 1150–1157, 2008. DOI: 10.2514/1.34085.CrossRefGoogle Scholar
  27. [27]
    R. Genesio, M. Tartaglia, A. Vicino. On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Transactions on Automatic Control, vol. 30, no. 8, pp. 747–755, 1985. DOI: 10.1109/TAC.1985.1104057.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Yaghmaei, M. J. Yazdanpanah. Pade-like approximation and its application in domain of attraction estimation. IMA Journal of Mathematical Control and Information, vol. 35, no. 2, pp. 661–687, 2017. DOI: 10.1093/imamci/ dmw071.MathSciNetzbMATHGoogle Scholar
  29. [29]
    J. A. De Dona, M. M. Seron, D. Q. Mayne, G. C. Goodwin. Enlarged terminal sets guaranteeing stability of receding horizon control. Systems & Control Letters, vol. 47, no. 1, pp. 57–63, 2002. DOI: 10.1016/S0167-6911(02)00175-5.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    L. Magni, G. De Nicolao, L. Magnani, R. Scattolini. A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica, vol. 37, no. 9, pp. 1351–1362, 2001. DOI: 10.1016/S0005-1098(01)00083-8.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Limon, T. Alamo, E. F. Camacho. Enlarging the domain of attraction of MPC controllers. Automatica, vol. 41, no. 4, pp. 629–635, 2005. DOI: 10.1016/j.automatica.2004.10.011.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. H. Gonzalez, D. Odloak. Enlarging the domain of attraction of stable MPC controllers, maintaining the output performance. Automatica, vol. 45, no. 4, pp. 1080–1085, 2009. DOI: 10.1016/j.automatica.2008.11.015.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    E. F. Camacho, C. Bordons. Model Predictive Control, London, UK: Springer Science & Business Media, 1999. DOI: 10.1007/978-1-4471-3398-8.CrossRefzbMATHGoogle Scholar
  34. [34]
    H. K. Khalil. Noninear Systems, New Jersey, USA: Prentice-Hall, 1996.Google Scholar
  35. [35]
    L. F. Jr. Williams. A modification to the half-interval search (binary search) method. In Proceedings of the 14th Annual Southeast Regional Conference, ACM, Birmingham, Alabama, pp. 95–101, 1976. DOI: 10.1145/503561. 503582.CrossRefGoogle Scholar
  36. [36]
    J. Lofberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, USA, pp. 284–289, 2004. DOI: 10.1109/CACSD.2004. 1393890.Google Scholar
  37. [37]
    O. Harkegaard. Quadratic Programming Control Atoolbox (QCAT), [Online], Available: http://research., 2004.Google Scholar
  38. [38]
    O. Harkegard, S. T. Glad. Resolving actuator redundancyoptimal control vs. control allocation. Automatica, vol. 41, no. 1, pp. 137–144, 2005. DOI: 10.1016/j.automatica.2004. 09.007.MathSciNetGoogle Scholar
  39. [39]
    G. Rosati, R. Secoli, D. Zanotto, A. Rossi, G. Boschetti. Planar robotic systems for upper-limb post-stroke rehabilitation. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Boston, USA, pp. 115–124, 2008. DOI: 10.1115/IMECE2008-67273.Google Scholar
  40. [40]
    M. A. Khosravi, H. D Taghirad. Robust PID control of fully-constrained cable driven parallel robots. Mechatronics, vol. 24, no. 2, pp. 87–97, 2014. DOI: 10.1016/j.mechatronics.2013.12.001.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Excellence in Industrial ControlFaculty of Electrical Engineering, K. N. Toosi University of Technology, Seyyed Khandan BridgeTehranIran
  2. 2.Center for Autonomous Marine Operation and SystemsDepartment of Engineering Cybernetics, Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations