Advertisement

Design of FOPI Controller for Time Delay Systems and Its Experimental Validation

  • Gargi BaruahEmail author
  • Somanath Majhi
  • Chitralekha Mahanta
Research Article

Abstract

In this paper, we report on the identification and modeling of unknown and higher order processes into first order plus dead time (FOPDT) plants based on the limit cycle information obtained from a single relay feedback test with an online fractional order pro-portional integral (FOPI) controller. The parameters of the test processes are accurately determined by the state space method while the FOPI controller settings are re-tuned to achieve enhanced performance based on the identified model parameters based on the balanced-tuning method. A new performance index, integral time fractional order absolute error (ITFIAE) is introduced in this paper for bal-anced tuning of fractional order (FO) controllers. It requires minimum design specifications without a-priori knowledge of gain and phase crossover frequencies and is done non-iteratively without disrupting the closed loop. Four test processes and experimental analys-is on a coupled tank system (CTS) validate the theory proposed.

Keywords

Auto-tuning fractional order proportional integral (FOPI) first order plus dead time (FOPDT) balanced tuning coupled tank system (CTS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Li, E. Eskinat, W. L. Luyben. An improved autotune identification method. Industrial & Engineering Chemistry Research, vol. 30, no. 7, pp. 1530–1541, 1991. DOI: 10.1021/ie00055a019.CrossRefGoogle Scholar
  2. [2]
    S. Majhi, D. P. Atherton. Auto–tuning and controller design for processes with small time delays. IE E Proceedings — Control Theory and Applications, vol. 146, no. 5, pp. 415–425, 1999. DOI: 10.1049/ip–cta:19990433.CrossRefGoogle Scholar
  3. [3]
    C. C. Hang, K. J. Astrom, Q. G. Wang. Relay feedback auto–tuning of process controllers–a tutorial review. Journal of Process Control, vol. 12, no. 1, pp. 143–162, 2002. DOI: 10.1016/S0959–1524(01)00025–7.CrossRefGoogle Scholar
  4. [4]
    P. Lanusse, A. Oustaloup, J. Sabatier. Robust factional order PID controllers: The first generation CRONE CSD approach. In Proceedings of International Conference on Fractional Differentiation and Its Applications, IEEE, Catania, Italy, 2014. DOI: 10.1109/ICFDA.2014.6967401.Google Scholar
  5. [5]
    C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue, V. Feliu. Fractional–order Systems and Controls: Fundamentals and Applications, London, UK: Springer, 2010. DOI: 10.1007/978–1–84996–335–0.CrossRefzbMATHGoogle Scholar
  6. [6]
    C. A. Monje, B. M. Vinagre, Y. Q. Chen, V. Feliu, P. Lanusse, J. Sabatier. Proposals for fractional PPD" tuning. In Proceedings of the 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, p p.115–120, 2004.Google Scholar
  7. [7]
    R. Caponetto, L. Fortuna, D. Porto. Parameter tuning of a non–integer order PID controller. In Proceedings of the 15th International Symposium on Mathematical Theory of Systems and Networks, Indiana, USA, 2002.Google Scholar
  8. [8]
    Y. Q. Chen. Ubiquitous fractional order controls. In Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, International Federation of Automatic Control, Porto, Portugal, 2006.Google Scholar
  9. [9]
    G. Maione, P. Lino. New tuning rules for fractional PIa controllers. Nonlinear Dynamics, vol. 49, no. 1–2, pp. 251257, 2007. DOI: 10.1007/s11071–006–9125–x.Google Scholar
  10. [10]
    Y. Q. Chen, T. Bhaskaran, D. Y. Xue. Practical tuning rule development for fractional order proportional and integral controllers. Journal of Computational and Nonlinear Dynamics, vol. 3, no. 2, Article number 021403, 2008. DOI: 10.1115/1.2833934.Google Scholar
  11. [11]
    M. Beschi, F. Padula, A. Visioli. The generalised isodamping approach for robust fractional PID controllers design. International Journal of Control, vol. 90, no. 6, pp. 11571164, 2017. DOI: 10.1080/00207179.2015.1099076.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. I. Muresan, A. Dutta, E. H. Dulf, Z. Pinar, A. Maxim, C. M. Ionescu. Tuning algorithms for fractional order internal model controllers for time delay processes. International Journal of Control, vol. 89, no. 3, pp. 579–593, 2016. DOI: 10.1080/00207179.2015.1086027.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Luo, Y. Q. Chen, C. Y. Wang, Y. G. Pi. Tuning fractional order proportional integral controllers for fractional order systems. Journal of Process Control, vol. 20, no. 7, pp. 823–831, 2010. DOI: 10.1016/j.jprocont.2010.04.011.CrossRefGoogle Scholar
  14. [14]
    G. Baruah, S. Majhi, C. Mahanta. Auto–tuning of FOPI controllers for TITO processes with experimental validation. International Journal of Automation and Computing, published online. DOI: 10.1007/s11633–018–1140–0.Google Scholar
  15. [15]
    C. A. Monje, B. M. Vinagre, V. Feliu, Y. Q. Chen. Tuning and auto–tuning of fractional order controllers for industry applications. Control Engineering Practice, vol. 16, no. 7, pp. 798–812, 2008. DOI: 10.1016/j.conengprac.2007. 08.006.CrossRefGoogle Scholar
  16. [16]
    H. Malek, Y. Luo, Y. Q. Chen. Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole. Mechatronics, vol. 23, no. 7, pp. 746–754, 2013. DOI: 10.1016/j.mechatronics. 2013.02.005.CrossRefGoogle Scholar
  17. [17]
    R. Caponetto, G. Dongola, F. L. Pappalardo, V. Tomasello. Auto–tuning method for PID" controllers design. International Journal of Innovative Computing, Information & Control, vol. 9, no. 10, pp. 4043–4055, 2013.zbMATHGoogle Scholar
  18. [18]
    P. Roy, B. Kar, B. K. Roy. Fractional order PI–PD control of liquid level in coupled two tank system and its experimental validation. Asian Journal of Control, vol. 19, no. 5, pp. 1699–1709, 2017. DOI: 10.1002/asjc.1487.MathSciNetzbMATHGoogle Scholar
  19. [19]
    A. Tepljakov, E. Petlenkov, J. Belikov, M. Halas. Design and implementation of fractional–order PID controllers for a fluid tank system. In Proceedings of American Control Conference, IEEE, Washington, USA, pp. 1777–1782, 2013. DOI: 10.1109/ACC.2013.6580093.Google Scholar
  20. [20]
    J. Belikov, E. Petlenkov. Model based control of a water tank system. IFAC Proceedings Volumes, vol. 47, no. 3, pp. 10838–10843, 2014. DOI: 10.3182/20140824–6–ZA–1003.00695.CrossRefGoogle Scholar
  21. [21]
    N. Katal, P. Kumar, S. Narayan. Optimal PID controller for coupled–tank liquid–level control system using bat algorithm. In Proceedings of International Conference on Power, Control and Embedded Systems, IEEE, Allahabad, India, 2014. DOI: 10.1109/ICPCES.2014.7062818.Google Scholar
  22. [22]
    C. A. Monje, B. M. Vinagre, V. Feliu, Y. Q. Chen. On auto–tuning of fractional order PID" controllers. IFAC Proceedings Volumes, vol. 39, no. 11, pp. 34–39, 2006. DOI: 10.3182/20060719–3–PT–4902.00005.CrossRefGoogle Scholar
  23. [23]
    Z. Gao, L. R. Zhai, Y. D. Liu. Robust stabilizing regions of fractional–order PI controllers for fractional–order systems with time–delays. International Journal of Automation and Computing, vol. 14, no. 3, pp. 340–349, 2017. DOI: 10.1007/s11633–015–0941–7.CrossRefGoogle Scholar
  24. [24]
    V. Kumar, K. P. S. Rana, J. Kumar, P. Mishra, S. S. Nair. A robust fractional order fuzzy P + fuzzy I + fuzzy D controller for nonlinear and uncertain system. International Journal of Automation and Computing, vol. 14, no. 4, pp. 474–488, 2017. DOI: 10.1007/s11633–016–0981–7.Google Scholar
  25. [25]
    P. Klan, R. Gorez. Balanced tuning of PI controllers. European Journal of Control, vol. 6, no. 6, pp. 541–550, 2000. DOI: 10.1016/S0947–3580(00)71117–4.CrossRefzbMATHGoogle Scholar
  26. [26]
    S. Skogestad. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, vol. 13, no. 4, pp. 291–309, 2003. DOI: 10.1016/S0959–1524(02)00062–8.MathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Klan, J. Marsik, J. Wilkie, R. Gorez, F. Smrcek, L. KrejöL Industrial controller zepadig 10 self–tuning and auto–tuning algorithms. In Proceedings of European Control Conference, IEEE, Brussels, Belgium, pp. 3416–3420, 1997. DOI: 10.23919/ECC.1997.7082641.Google Scholar
  28. [28]
    S. Majhi. Advanced Control Theory: A Relay Feedback Approach, Singapore, Singapore: Cengage Learning Asia, 2009.Google Scholar
  29. [29]
    U. Mehta, S. Majhi. On–line relay test for automatic tuning of PI controllers for stable processes. Transactions of the Institute of Measurement and Control, vol. 34, no. 7, pp. 903–913, 2012. DOI: 10.1177/0142331211425401.CrossRefGoogle Scholar
  30. [30]
    K. Astrom, T. Hagglund. PID Controllers: Theory, Design, and Tuning, Research Triangle Park, USA: ISA, 1995.Google Scholar
  31. [31]
    A. O’Dwyer. A summary of PI and PID controller tuning rules for processes with time delay. Part 1: PI controller tuning rules. IFAC Proceedings Volumes, vol. 33, no. 4, pp. 159–164, 2000. DOI: 10.1016/S1474–6670(17)38237–X.CrossRefGoogle Scholar
  32. [32]
    D. Xue, Y. Chen. Sub–optimum H2 rational approximations to fractional order linear systems. In Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, USA, pp. 1527–1536, 2005.Google Scholar
  33. [33]
    Z. Li, L. Liu, S. Dehghan, Y. Q. Chen, D. Y. Xue. A review and evaluation of numerical tools for fractional calculus and fractional order controls. International Journal of Control, vol. 90, no. 6, pp. 1165–1181, 2017. DOI: 10.1080/00207179.2015.1124290.Google Scholar
  34. [34]
    T. N. L. Vu, M. Lee. Analytical design of fractional–order proportional–integral controllers for time–delay processes. ISA Transactions, vol. 52, no. 5, pp. 583–591, 2013. DOI: 10.1016/j.isatra.2013.06.003.CrossRefGoogle Scholar
  35. [35]
    Y. Lee, S. Park, M. Lee, C. Brosilow. PID controller tuning for desired closed–loop responses for SI/SO systems. AIChE Journal, vol. 44, no. 1, pp. 106–115, 1998.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations