Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion

  • Huan Liu
  • Gen-Fu XiaoEmail author
  • Yun-Lan Tan
  • Chun-Juan Ouyang
Research Article


Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.


Feature fusion multi-scale circle Gaussian combined invariant moment multi-direction gray level co-occurrence matrix multi-source remote sensing image registration contourlet transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052), Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172), the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015), the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633), the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381).


  1. [1]
    M. G. Gong, J. L. Zhao, J. Liu, Q. G. Miao, L. C. Jiao. Change detection in synthetic aperture radar images based on deep neural networks. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 1, pp. 125–138, 2016. DOI: 10.1109/TNNLS.2015.2435783.MathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Z. Zhang, M. G. Gong, L. Z. Su, J. Liu, Z. Z. Li. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 116, pp. 24–41, 2016. DOI: 10.1016/j.isprsjprs.2016.02.013.CrossRefGoogle Scholar
  3. [3]
    K. Nogueira, O. A. B. Penatti, J. A. dos Santos. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, vol. 61, pp. 539–556, 2017. DOI: 10.1016/j.patcog.2016.07. 001.CrossRefGoogle Scholar
  4. [4]
    Y. S. Li, W. Y. Xie, H. Q. Li. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognition, vol. 63, pp. 371–383, 2017. DOI: 10.1016/j.patcog.2016.10.019.CrossRefGoogle Scholar
  5. [5]
    M. Merras, S. El Hazzat, A. Saaid, K. Satori, A. G. Nazih. 3D face reconstruction using images from cameras with varying parameters. International Journal of Automation and Computing, vol. 14, no. 6, pp. 661–671, 2017. DOI: 10.1007/s11633-016-0999-x.CrossRefGoogle Scholar
  6. [6]
    Y. Bentoutou, N. Taleb, K. Kpalma, J. Ronsin. An automatic image registration for applications in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 9, pp. 2127–2137, 2005. DOI: 10.1109/TGRS.2005.853187.CrossRefGoogle Scholar
  7. [7]
    Y. Wu, W. P. Ma, M. G. Gong, L. Z. Su, L. C. Jiao. A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 1, pp. 43–47, 2015. DOI: 10.1109/LGRS.2014.2325970.CrossRefGoogle Scholar
  8. [8]
    K. Mikolajczyk, C. Schmid. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005. DOI: 10.1109/TPAMI.2005.188.CrossRefGoogle Scholar
  9. [9]
    X. J. Liu, X. M. Tao, N. Ge. Fast remote-sensing image registration using priori information and robust feature extraction. Tsinghua Science and Technology, vol. 21, no. 5, pp. 552–560, 2016. DOI: 10.1109/TST.2016.7590324.CrossRefGoogle Scholar
  10. [10]
    Q. L. Li, G. Y. Wang, J. G. Liu, S. B. Chen. Robust scaleinvariant feature matching for remote sensing image registration. IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 2, pp. 287–291, 2009. DOI: 10.1109/LGRS.2008. 2011751.CrossRefGoogle Scholar
  11. [11]
    D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. DOI: 10.1023/B:VISI. 0000029664.99615.94.MathSciNetCrossRefGoogle Scholar
  12. [12]
    K. Zhang, X. Z. Li, J. X. Zhang. A robust point-matching algorithm for remote sensing image registration. IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 2, pp. 469–473, 2014. DOI: 10.1109/LGRS.2013.2267771.CrossRefGoogle Scholar
  13. [13]
    B. Li, H. Ye. RSCJ: Robust sample consensus judging algorithm for remote sensing image registration. IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 4, pp. 574–578, 2012. DOI: 10.1109/LGRS.2011.2175434.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Q. L. Li, S. W. Qi, Y. Y. Shen, D. Ni, H. S. Zhang, T. F. Wang. Multispectral image alignment with nonlinear scale-invariant keypoint and enhanced local feature matrix. IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 7, pp. 1151–1155, 2015. DOI: 10.1109/LGRS.2015. 2412955.Google Scholar
  15. [15]
    L. Yu, D. G. Zhang, E. J. Holden. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images. Computers & Geoscience, vol. 34, no. 7, pp. 838–848, 2008. DOI: 10.1016/j.cageo.2007.10.005.CrossRefGoogle Scholar
  16. [16]
    S. H. Wang, H. J. You, K. Fu. BFSIFT: A novel method to find feature matches for SAR image registration. IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 4, pp. 649–653, 2012. DOI: 10.1109/LGRS.2011.2177437.CrossRefGoogle Scholar
  17. [17]
    Y. X. Ye, J. Shan. A local descriptor based registration method for multispectral remote sensing images with nonlinear intensity differences. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 90, pp. 83–95, 2014. DOI: 10.1016/j.isprsjprs.2014.01.009.CrossRefGoogle Scholar
  18. [18]
    B. Kupfer, N. S. Netanyahu, I. Shimshoni. An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images. IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 379–383, 2015. DOI: 10.1109/LGRS.2014.2343471.CrossRefGoogle Scholar
  19. [19]
    X. L. Dai, S. Khorram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2351–2362, 1999. DOI: 10.1109/36.789634.CrossRefGoogle Scholar
  20. [20]
    M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, vol. 8, no. 2, pp. 179–187, 1962. DOI: 10.1109/TIT.1962.1057692.CrossRefzbMATHGoogle Scholar
  21. [21]
    M. El Mallahi, J. El Mekkaoui, A. Zouhri, H. Amakdouf, H. Qjidaa. Rotation scaling and translation invariants of 3D radial shifted Legendre moments. International Journal of Automation and Computing, vol. 15, no. 2, pp. 169–180, 2018. DOI: 10.1007/s11633-017-1105-8.CrossRefGoogle Scholar
  22. [22]
    M. El Mallahi, A. Zouhri, A. El Affar, A. Tahiri, H. Qjidaa. Radial Hahn moment invariants for 2D and 3D image recognition. International Journal of Automation and Computing, vol. 15, no. 3, pp. 277–289, 2018. DOI: 10.1007/s11633-017-1071-1.CrossRefGoogle Scholar
  23. [23]
    J. F. Dellinger, J. Delon, Y. Gousseau, J. Michel, F. Tupin. SAR-SIFT: A sift-like algorithm for sar images. IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 1, pp. 453–466, 2015. DOI: 10.1109/TGRS.2014. 2323552.CrossRefGoogle Scholar
  24. [24]
    Y. Wu, M. G. Gong, J. Jia, W. P. Ma. Remote sensing image registration with spatial restraint based on moment invariants and fast generalized fuzzy clustering. In Proceedings of Conference on Technologies and Applications of Artificial Intelligence, Tainan, China, pp. 97–104, 2016. DOI: 10.1109/TAAI.2015.7407062.Google Scholar
  25. [25]
    H. Liu, Y. Xiao, W. D. Tang, Y. H. Zhou. Illumination-robust and anti-blur feature descriptors for image matching in abdomen reconstruction. International Journal of Automation and Computing, vol. 11, no. 5, pp. 469–479, 2014. DOI: 10.1007/s11633-014-0829-y.CrossRefGoogle Scholar
  26. [26]
    X. H. Yang, L. C. Jiao, D. F. Li. Directional filter for SAR images based on nonsubsampled contourlet transform and immune clonal selection. International Journal of Automation and Computing, vol. 6, no. 3, pp. 245–253, 2009. DOI: 10.1007/s11633-009-0245-x.CrossRefGoogle Scholar
  27. [27]
    Q. Q. Lu, J. X. Pu, Z. H. Liu. Feature extraction and automatic material classification of underground objects from ground penetrating radar data. Journal of Electrical and Computer Engineering, vol. 2014, no. 28, Article number 28, 2014. DOI: 10.1155/2014/347307.Google Scholar
  28. [28]
    H. Y. Patil, A. G. Kothari, K. M. Bhurchandi. Expression invariant face recognition using local binary patterns and Contourlet transform. Optik, vol. 127, no. 5, pp. 2670–2678, 2016. DOI: 10.1016/j.ijleo.2015.11.187.CrossRefGoogle Scholar
  29. [29]
    J. J. Cai, Q. M. Cheng, M. J. Peng, Y. Song. Fusion of infrared and visible images based on nonsubsampled contourlet transform and sparse K-SVD dictionary learning. Infrared Physics & Technology, vol. 82, pp. 85–95, 2017. DOI: 10.1016/j.infrared.2017.01.026.CrossRefGoogle Scholar
  30. [30]
    A. Srivastava, V. Bhateja, A. Moin. Combination of PCA and contourlets for multispectral image fusion. In Proceedings of International Conference on Data Engineering and Communication Technology, Springer, Singapore, pp. 577–585, 2016. DOI: 10.1007/978-981-10-1678-3.Google Scholar
  31. [31]
    L. Liu, Z. H. Jia, N. Kasabov. A remote sensing image enhancement method using mean filter and unsharp masking in non-subsampled contourlet transform domain. Transactions of the Institute of Measurement and Control, vol. 39, no. 2, pp. 183–193, 2017. DOI: 10.1177/0142331215 604210.CrossRefGoogle Scholar
  32. [32]
    G. Y. Duan, J. Yang, Y. L. Yang. Content-based image retrieval research. Physics Procedia, vol. 22, pp. 471–477, 2011. DOI: 10.1016/j.phpro.2011.11.073.CrossRefGoogle Scholar
  33. [33]
    Y. S. Dong, J. W. Ma. Feature extraction through contourlet subband clustering for texture classification. Neurocomputing, vol. 116, pp. 157–164, 2013. DOI: 10. 1016/j.neucom.2011.12.059.CrossRefGoogle Scholar
  34. [34]
    J. Y. Ma, Y. Ma, J. Zhao, J. W. Tian. Image feature matching via progressive vector field consensus. IEEE Signal Processing Letters, vol. 22, no. 6, pp. 767–771, 2015. DOI: 10.1109/LSP.2014.2358625.CrossRefGoogle Scholar
  35. [35]
    M. A. Fischler, R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. DOI: 10.1145/358669.358692.MathSciNetCrossRefGoogle Scholar
  36. [36]
    M. N. Do, M. Vetterli. The Contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2091–2106, 2005. DOI: 10.1109/TIP.2005.859376.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic and Information EngineeringJinggangshan UniversityJi′anChina
  2. 2.Key Laboratory of Watershed Ecology and Geographical Environment MonitoringNational Administration of Surveying, Mapping and Geoinformation (NASG)Ji′anChina
  3. 3.College of Mechanical and ElectronicJinggangshan UniversityJi′anChina

Personalised recommendations