Development and Modeling of Remotely Operated Scaled Multi-wheeled Combat Vehicle Using System Identification

  • A. N. Ouda
  • Amr MohamedEmail author
  • Moustafa EI-Gindy
  • Haoxiang Lang
  • Jing Ren
Research Article


This paper describes the development and modeling of a remotely operated scaled multi-wheeled combat vehicle (ROMW-CV) using system identification methodology for heading angle tracking. The vehicle was developed at the vehicle dynamics and crash research (VDCR) Lab at the University of Ontario Institute of Technology (UOIT) to analyze the characteristics of the full-size model. For such vehicles, the development of controllers is considered the most crucial issue. In this paper, the ROMWCV is developed first. An experimental test was carried out to record and analyze the vehicle input/output signals in open loop system, which is considered a multi-input-single-output (MISO) system. Subsequently, a fuzzy logic controller (FLC) was developed for heading angle tracking. The experiments showed that it was feasible to represent the dynamic characteristics of the vehicle using the system identification technique. The estimation and validation results demonstrated that the obtained identified model was able to explain 88.44% of the output vari-ation. In addition, the developed FLC showed a good heading angle tracking.


Autonomous multi-wheeled vehicle system identification all wheel steering fuzzy logic (FL) parametric identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to express their gratitude to the Egyptian Armed Forces for the financial support extended to the undergraduate and graduate students of the Vehicle Dynamics and Crash Research (VDCR) Laboratory for operating the vehicle during the experimental tests.


  1. [1]
    A. Fisher. Google's Self–driving Cars: A Quest for Acceptance, [Online], Available:–09/google–self–driving–car, 2014.Google Scholar
  2. [2]
    A. M. Kessler. Elon Musk Says Self–Driving Tesla Cars W ill Be in the U. S. by Summer, The New York Times, [Online], Available:–musk–says–self–driving–tesla–cars–willbe–in–the–us–by–summer.html?_r= 0, 2015.Google Scholar
  3. [3]
    K. J. Äström, P. Eykhoff. System identification–a survey. Automatica, vol. 7, no. 2, pp. 123–162, 1971. DOI: 10. 1016/0005–1098(71)90059–8.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Y. Liu, M. S. Hasan, H. N. Yu. Modelling and remote contro l of an excavator. International Journal of Automation and Computing, vol. 7, no. 3, pp. 349–358, 2010. DOI: 10.1007/s11633–010–0514–8.CrossRefGoogle Scholar
  5. [5]
    I. Rano, R. Iglesias. Application of systems identification to the implementation of motion camouflage in mobile robots. Autonomous Robots, vol. 40, no. 2, pp. 229–244, 2016. DOI: 10.1007/s10514–015–9449–9.CrossRefGoogle Scholar
  6. [6]
    I. A. Raptis, K. P. Valavanis, W. A. Moreno. System identification and discrete nonlinear control of miniature helicopters using backstepping. Journal of intelligent and Robotic Systems, vol. 55, no. 2–3, pp. 223–243, 2009. DOI: 10.1007/s10846–008–9295–5.CrossRefzbMATHGoogle Scholar
  7. [7]
    C. West, A. Montazeri, S. D. Monk, D. Duda, C. J. Taylor. A new approach to improve the parameter estimation accuracy in robotic manipulators using a multi–objective output error identification technique. In Proceedings of the 26th International Symposium on Robot and Human Interactive Communication, Lisbon, Portugal, pp. 14061411, 2017. DOI: 10.1109/R?MAN.2017.8172488.Google Scholar
  8. [8]
    M. Li, H. P. Wu, H. Handroos, Y. B. Wang, A. Loving, O. Crofts, M. Coleman, R. Skilton, G. Burroughes, J. Keep. RACE RM Control Team. Dynamic model identification method of manipulators for inside DEMO engineering. Fusion Engineering and Design, vol. 124, pp. 638–644, 2017. DOI: 10.1016/j.fusengdes.2017.02.034.CrossRefGoogle Scholar
  9. [9]
    K. Park, Y. Choi. System identification method for robotic manipulator based on dynamic momentum regressor. In Proceedings of the 12th IEEE International Conference on Control and Automation, Kathmandu, Nepal, pp. 755760, 2016, DOI: 10.1109/ICCA.2016.7505369.Google Scholar
  10. [10]
    A. T. Abdulsadda, K. Iqbal. An improved SPSA algorithm for system identification using fuzzy rules for training neural networks. International Journal of Automation and Computing, vol. 8, no. 3, pp. 333–339, 2011.CrossRefGoogle Scholar
  11. [11]
    R. Wilensky. An Extensive Review on Generator Excitation System Modeling, Design, and Parameter Identification, Finland: HAL CCSD, 2016.Google Scholar
  12. [12]
    F. Ding. Combined state and least squares parameter estimation algorithms for dynamic systems. Applied Mathematical Modelling, vol. 38, no. 1, pp. 403~412, 2014. DOI: 10.1016/j.apm.2013.06.007.Google Scholar
  13. [13]
    S. X. Jing, T. H. Pan, Z. M. Li. Recursive Bayesian algorithm for identification of systems with non–uniformly sampled input data. International Journal of Automation and Computing, vol. 15, no. 3, pp. 335–344, 2018. DOI: 10.1007/s11633–017–1073–z.CrossRefGoogle Scholar
  14. [14]
    S. H. Mousavian, H. R. Koofigar. Identification–based robust motion control of an AUV: Optimized by particle swarm optimization algorithm. Journal of Intelligent & Robotic Systems, vol. 85, no. 2, pp. 331–352, 2017. DOI: 10.1007/s10846–016–0401–9.CrossRefGoogle Scholar
  15. [15]
    X. J. Wu, X. L. Wu, X. Y. Luo. Adaptive neural network dynamic surface control for a class of nonlinear systems with uncertain time delays. International Journal of Automation and Computing, vol. 13, no. 4, pp. 409–416, 2016. DOI: 10.1007/s11633–015–0945–3.CrossRefGoogle Scholar
  16. [16]
    R. Ortega, M. W. Spong. Adaptive motion control of rigid robots: A tutorial. Automatica, vol. 25, no. 6, pp. 877–888, 1989. DOI: 10.1016/0005–1098(89)90054–X.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Moradi, H. Malekizade. Neural network identification based multivariable feedback linearization robust control for a two–link manipulator. Journal of Intelligent & Robotic Systems, vol. 72, no. 2, pp. 167–178, 2013. DOI: 10. 1007/s10846–013–9827–5.CrossRefGoogle Scholar
  18. [18]
    J. P. Noel, G. Kerschen. Nonlinear system identification in structural dynamics: 10 more years of progress. Mechanical Systems and Signal Processing, vol. 83, pp. 2–35, 2017. DOI: 10.1016/j.ymssp.2016.07.020.CrossRefGoogle Scholar
  19. [19]
    H. Richter, D. Simon, W. A. Smith, S. Samorezov. Dynamic modeling, parameter estimation and control of a leg prosthesis test robot. Applied Mathematical Modelling, vol. 39, no. 2, pp. 559–573, 2015. DOI: 10.1016/j.apm. 2014.06.006.MathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Gautier, W. Khalil. Exciting trajectories for the identification of base inertial parameters of robots. The International Journal of Robotics Research, vol. 11, no. 4, pp. 362–375, 1992. DOI: 10.1177/027836499201100408.CrossRefGoogle Scholar
  21. [21]
    M. Bisheban, T. Lee. Computational geometric system identification for the attitude dynamics on SO(3). In Proceedings of American Control Conference, Seattle, USA, pp. 2249–2254, 2017. DOI: 10.23919/ACC.2017.7963287.Google Scholar
  22. [22]
    B. R. J. Haverkamp, C. T. Chou, M. H. Verhaegen, R. Jo hansson. Identification of continuous–time MIMO state space models from sampled data, in the presence of process and measurement noise. In Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 1539–1544, 1996. DOI: 10.1109/CDC.1996.572741.CrossRefGoogle Scholar
  23. [23]
    Y. H. Eng, K. M. Teo, M. Chitre, K. M. Ng. Online system identification of an autonomous underwater vehicle via in–field experiments. IEEE Journal of Oceanic Engineering, vol. 41, no. 1, pp. 5–17, 2016. DOI: 10.1109/JOE. 2015.2403576.CrossRefGoogle Scholar
  24. [24]
    A. Garg, K. Tai, B. N. Panda. System identification: Survey on modeling methods and models. In Proceedings of International Conference on Artificial Intelligence and Evolutionary Computation in Engineering Systems, Springer, Singapore, pp. 607–615, 2017. DOI: 10.1007/978981–10–3174–8.Google Scholar
  25. [25]
    Y. C. Lai, Q. L. Tri. System identification and control of a small unmanned helicopter at hover mode. In Proceedings of the 2nd International Conference on Control and Robotics Engineering, Bangkok, Thailand, pp. 92–96, 2017. DOI: 10.1109/ICCRE.2017.7935049.Google Scholar
  26. [26]
    E. P. Mendes, A. A. D. Medeiros. Identification of quasilinear dynamic model with dead zone for mobile robot with differential drive. In Proceedings of Latin American Robotics Symposium and Intelligent Robotic Meeting, Sao Bernardo do Campo, Brazil, pp. 132–137, 2010. DOI: 10.1109/LARS.2010.36.Google Scholar
  27. [27]
    Z. Hasiewicz, P. L. Sliwinski, G. Mzyk. Nonlinear system identification under various prior knowledge. IFAC Proceedings Volumes, vol. 41, no. 2, pp. 7849–7858, 2008.CrossRefGoogle Scholar
  28. [28]
    S. Faddel, A. A. S. Mohamed, O. A. Mohammed. Fuzzy logic–based autonomous controller for electric vehicles charging under different conditions in residential distribution systems. Electric Power Systems Research, vol. 148, pp. 48–58, 2017. DOI: 10.1016/j.epsr.2017.03.009.CrossRefGoogle Scholar
  29. [29]
    Fahmizal, C. H. Kuo. Trajectory and heading tracking of a mecanum wheeled robot using fuzzy logic control. In Proceedings of International Conference on Instrumentation, Control and Automation, Bandung, Indonesia, pp. 54–59, 2016. DOI: 10.1109/ICA.2016.7811475.Google Scholar
  30. [30]
    Z. Q. Cao, F. Shen, C. Zhou, N. Gu, S. Nahavandi, D. Xu. Heading control for a robotic dolphin based on a self–tuning fuzzy strategy. International Journal of Advanced Robotic Systems, vol. 13, no. 1, pp. 1–8, 2016. DOI: 10.5772/62289.CrossRefGoogle Scholar
  31. [31]
    A. M. Rao, K. Ramji, B. S. K. S. S. Rao, V. Vasu, C. Puneeth. Navigation of non–holonomic mobile robot using neuro–fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, 2017. DOI: 10.1007/s11633–016–1042–y.CrossRefGoogle Scholar
  32. [32]
    W. Pedrycz. Fuzzy Sets Engineering, Boca Raton, USA: CRC Press, 1995.Google Scholar
  33. [33]
    Z. J. Wang, J. W. Zhang, Y. L. Huang, H. Zhang, A. S. Mehr. Application of fuzzy logic for autonomous bay parking of automobiles. International Journal of Automation and Computing, vol. 8, no. 4, pp. 445–451, 2011. DOI: 10.1007/s11633–011–0602–4.CrossRefGoogle Scholar
  34. [34]
    G. Antonelli, S. Chiaverini, G. Fusco. A fuzzy–logic–based approach for mobile robot path tracking. IEEE Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 211–221, 2007. DOI: 10.1109/TFUZZ.2006.879998.CrossRefGoogle Scholar
  35. [35]
    S. Sahoo, S. C. Subramanian, N. Mahale, S. Srivastava. Design and development of a heading angle controller for an unmanned ground vehicle. International Journal of Automotive Technology, vol. 16, no. 1, pp. 27–37, 2015. DOI: 10.1007/s12239–015–0003–8.CrossRefGoogle Scholar
  36. [36]
    H. Tan, J. Iacobellis, A. Levenko, R. Mutiger, K. Ng, J. Averill. Design and Development of 8x8 Electric Combat Vehicle. Capstone Systems poroject final Engineering Report, Department of Mechanical Engineering, University of Ontario Institute of Technology, Canada, 2017.Google Scholar
  37. [37]
    L. Lennart. System Identification: Theory for the User, 2nd ed., New Jersey, USA: Prentice Hall, 1999.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of Technology (UOIT)OshawaCanada

Personalised recommendations