Advertisement

Image Encryption Algorithm Based on Compressive Sensing and Fractional DCT via Polynomial Interpolation

  • Ya-Ru Liang
  • Zhi-Yong XiaoEmail author
Research Article

Abstract

Based on compressive sensing and fractional discrete cosine transform (DCT) via polynomial interpolation (PI-FrDCT), an image encryption algorithm is proposed, in which the compression and encryption of an image are accomplished simultaneously. It can keep information secret more effectively with low data transmission. Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR (XOR) matrix, which greatly enlarge the key space of the encryption system. Unlike many other fractional transforms, the output of PI-FrDCT is real, which facilitates the storage, transmission and display of the encrypted image. Due to the introduction of a plain-image-dependent disturbance factor, the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image. Thus, the proposed encryption scheme is very sensitive to the plain-image, which makes the encryption system more secure. Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.

Keywords

Compressive sensing fractional discrete cosine transform (DCT) via polynomial interpolation image encryption three-dimensional piecewise and nonlinear chaotic maps real-valued output 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61662047 and 61462061).

References

  1. [1]
    G. H. Situ, J. J. Zhang. A cascaded iterative Fourier transform algorithm for optical security applications. Optik–International Journal for Light and Electron Optics, vol. 114, no. 10, pp. 473–477, 2003. DOI: 10.1078/0030-4026-00291.CrossRefGoogle Scholar
  2. [2]
    X. G. Wang, D. M. Zhao. Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain. Optics Communications, vol. 284, no. 1, pp. 148–152, 2011. DOI: 10.1016/j.optcom.2010.09.034.CrossRefGoogle Scholar
  3. [3]
    M. H. Annaby, M. A. Rushdi, E. A. Nehary. Image encryption via discrete fractional Fourier-type transforms generated by random matrices. Signal Processing: Image Communication, vol. 49, pp. 25–46, 2016. DOI: 10.1016/j.image.2016.09.006.Google Scholar
  4. [4]
    L. S. Sui, K. K. Duan, J. L. Liang, Z. Q. Zhang, H. N. Meng. Asymmetric multiple-image encryption based on coupled logistic maps in fractional Fourier transform domain. Optics and Lasers in Engineering, vol. 62, pp. 139–152, 2014. DOI: 10.1016/j.optlaseng.2014.06.003.CrossRefGoogle Scholar
  5. [5]
    L. S. Sui, M. J. Xu, A. L. Tian. Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain. Optics and Lasers in Engineering, vol. 91, pp. 106–114, 2017. DOI: 10.1016/j.optlaseng.2016.11.017.CrossRefGoogle Scholar
  6. [6]
    Z. J. Liu, M. A. Ahmad, S. T. Liu. Image encryption based on double random amplitude coding in random Hartley transform domain. Optik–International Journal for Light and Electron Optics, vol. 121, no. 11, pp. 959–964, 2010. DOI: 10.1016/j.ijleo.2008.12.006.CrossRefGoogle Scholar
  7. [7]
    S. M. Pan, R. H. Wen, Z. H. Zhou, N. R. Zhou. Optical multi-image encryption scheme based on discrete cosine transform and nonlinear fractional Mellin transform. Multimedia Tools and Applications, vol. 76, no. 2, pp. 2933–2953, 2017. DOI: 10.1007/s11042-015-3209-x.CrossRefGoogle Scholar
  8. [8]
    N. R. Zhou, J. P. Yang, C. F. Tan, S. M. Pan, Z. H. Zhou. Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform. Optics Communications, vol. 354, pp. 112–121, 2015. DOI: 10.1016/j.optcom.2015.05.043.CrossRefGoogle Scholar
  9. [9]
    G. Unnikrishnan, J. Joseph, K. Singh. Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, vol. 25, no. 12, pp. 887–889, 2000. DOI: 10.1364/OL.25.000887.CrossRefGoogle Scholar
  10. [10]
    R. Tao, J. Lang, Y. Wang. Optical image encryption based on the multiple-parameter fractional Fourier transform. Optics Letters, vol. 33, no. 6, pp. 581–583, 2008. DOI: 10.1364/OL.33.000581.CrossRefGoogle Scholar
  11. [11]
    Y. P. Li, C. H. Wang, H. Chen. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Optics and Lasers in Engineering, vol. 90, pp. 238–246, 2017. DOI: 10.1016/j.optlaseng. 2016.10.020.CrossRefGoogle Scholar
  12. [12]
    Z. Parvin, H. Seyedarabi, M. Shamsi. A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimedia Tools and Applications, vol. 75, no. 17, pp. 10631–10648, 2016. DOI: 10. 1007/s11042-014-2115-y.CrossRefGoogle Scholar
  13. [13]
    R. Enayatifar, A. H. Abdullah, I. F. Isnin, A. Altameem, M. Lee. Image encryption using a synchronous permutation-diffusion technique. Optics and Laser Technology, vol. 90, pp. 146–154, 2017. DOI: 10.1016/j.optlaseng.2016. 10.006.CrossRefGoogle Scholar
  14. [14]
    T. G. Gao, Z. Q. Chen. A new image encryption algorithm based on hyper-chaos. Physics Letters A, vol. 372, no. 4, pp. 394–400, 2008. DOI: 10.1016/j.physleta.2007.07.040.CrossRefzbMATHGoogle Scholar
  15. [15]
    W. Zhang, K. W. Wong, H. Yu, Z. L. Zhu. An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 8, pp. 2066–2080, 2013. DOI: 10.1016/j.cnsns.2012.12.012.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    I. Venturini, P. Duhamel. Reality preserving fractional transforms. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, vol. 5, pp. 205–208, 2004.Google Scholar
  17. [17]
    J. Lang. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform. Optics Communications, vol. 285, no. 10–11, pp. 2584–2590, 2012. DOI: 10.1016/j.optcom.2012.01.085.CrossRefGoogle Scholar
  18. [18]
    N. R. Zhou, Y. X. Wang, L. H. Gong, X. B. Chen, Y. X. Yang. Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Optics & Laser Technology, vol. 44, no. 7, pp. 2270–2281, 2012. DOI: 10.1016/j.optlastec.2012.02.027.CrossRefGoogle Scholar
  19. [19]
    Z. J. Liu, Y. Zhang, H. F. Zhao, M. A. Ahmad, S. T. Liu. Optical multi-image encryption based on frequency shift. Optik–International Journal for Light and Electron Optics, vol. 122, no. 11, pp. 1010–1013, 2011. DOI: 10.1016/j. ijleo.2010.06.039.CrossRefGoogle Scholar
  20. [20]
    E. J. Candès. Compressive sampling. In Proceedings of the International Congress of Mathematics, Madrid, Spain, pp. 1433–1452, 2006.Google Scholar
  21. [21]
    E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. DOI: 10.1109/TIT.2005.862083.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. DOI: 10.1109/TIT.2006.871582.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R. Huang, K. Sakurai. A robust and compression-combined digital image encryption method based on compressive sensing. In Proceedings of the 7th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Dalian, China, pp. 105–108, 2011. DOI: 10.1109/IIHMSP.2011.53.Google Scholar
  24. [24]
    Y. Rachlin, D. Baron. The secrecy of compressed sensing measurements. In Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Urbana, USA, pp. 813–817, 2008. DOI: 10.1109/ALLERTON.2008.4797641.Google Scholar
  25. [25]
    M. R. Mayiami, B. Seyfe, H. G. Bafghi. Perfect secrecy via compressed sensing. In Proceedings of Iran Workshop on Communication and Information Theory, Tehran, Iran, pp. 1–5, 2013. DOI: 10.1109/IWCIT.2013.6555751.Google Scholar
  26. [26]
    P. Lu, Z. Y. Xu, X. Lu, X. Y. Liu. Digital image information encryption based on compressive sensing and double random-phase encoding technique. Optik–International Journal for Light and Electron Optics, vol. 124, no. 16, pp. 2514–2518, 2013. DOI: 10.1016/j.ijleo.2012.08.017.CrossRefGoogle Scholar
  27. [27]
    G. Q. Hu, D. Xiao, Y. Wang, T. Xiang. An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. Journal of Visual Communication and Image Representation, vol. 44, pp. 116–127, 2017. DOI: 10.1016/j.jvcir.2017.01.022.CrossRefGoogle Scholar
  28. [28]
    C. Feng, L. Xiao, Z. H. Wei. Compressive sensing inverse synthetic aperture radar imaging based on gini index regularization. International Journal of Automation and Computing, vol. 11, no. 4, pp. 441–448, 2014. DOI: 10.1007/s11633-014-0811-8.CrossRefGoogle Scholar
  29. [29]
    E. J. Candès. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, vol. 346, no. 9–10, pp. 589–592, 2008. DOI: 10. 1016/j.crma.2008.03.014.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995. DOI: 10.1137/S0097539792240406.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998. DOI: 10.1137/S1064827596304010.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Y. Zhang, Y. Y. Wang, C. Zhang. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics, vol. 52, no. 8, pp. 1046–1055, 2012. DOI: 10.1016/j.ultras.2012.08.012.MathSciNetCrossRefGoogle Scholar
  33. [33]
    S. G. Mallat, Z. F. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993. DOI: 10.1109/78.258082.CrossRefzbMATHGoogle Scholar
  34. [34]
    E. T. Liu, V. N. Temlyakov. The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2040–2047, 2012. DOI: 10.1109/TIT.2011.2177632.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    H. Mohimani, M. Babaie-Zadeh, C. Jutten. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 289–301, 2009. DOI: 10.1109/TSP.2008.2007606.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G. Cariolaro, T. Erseghe, P. Kraniauskas. The fractional discrete cosine transform. IEEE Transactions on Signal Processing, vol. 50, no. 4, pp. 902–911, 2002. DOI: 10.1109/78.992138.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. H. Wu, F. F. Guo, P. P. Zeng, N. R. Zhou. Image encryption based on a reality-preserving fractional discrete cosine transform and a chaos-based generating sequence. Journal of Modern Optics, vol. 60, no. 20, pp. 1760–1771, 2013. DOI: 10.1080/09500340.2013.858189.CrossRefGoogle Scholar
  38. [38]
    Y. R. Liang, G. P. Liu, N. R. Zhou, J. H. Wu. Image encryption combining multiple generating sequences controlled fractional DCT with dependent scrambling and diffusion. Journal of Modern Optics, vol. 62, no. 4, pp. 251–264, 2014. DOI: 10.1080/09500340.2014.964342.CrossRefGoogle Scholar
  39. [39]
    Y. R. Liang, J. H. Wu. New image encryption combining fractional DCT via polynomial interpolation with dependent scrambling and diffusion. Journal of China Universities of Posts and Telecommunications, vol. 22, no. 5, pp. 1–9, 2015. DOI: 10.1016/S1005-8885(15)60673-2.MathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Akhshani, S. Behnia, A. Akhavan, H. Abu Hassan, Z. Hassan. A novel scheme for image encryption based on 2D piecewise chaotic maps. Optics Communications, vol. 283, no. 17, pp. 3259–3266, 2010. DOI: 10.1016/j.optcom.2010. 04.056.CrossRefGoogle Scholar
  41. [41]
    N. R. Zhou, A. D. Zhang, J. H. Wu, D. J. Pei, Y. X. Yang. Novel hybrid image compression-encryption algorithm based on compressive sensing. Optik–International Journal for Light and Electron Optics, vol. 125, no. 18, pp. 5075–5080, 2014. DOI: 10.1016/j.ijleo.2014.06.054.CrossRefGoogle Scholar
  42. [42]
    A. S. Arumugam, D. N. Krishnan. Biometric encryption and bio-fusion authentication using combined Arnold transition and permutation matrices. International Journal of Engineering Science and Technology, vol. 2, no. 10, pp. 5357–5369, 2010.Google Scholar
  43. [43]
    V. Patidar, N. K. Pareek, G. K. Purohit, K. K. Sud. A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption. Optics Communications, vol. 284, no. 19, pp. 4331–4339, 2011. DOI: 10.1016/j.optcom.2011.05.028.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringJiangxi Agricultural UniversityNanchangChina
  2. 2.School of SoftwareJiangxi Agricultural UniversityNanchangChina

Personalised recommendations