Advertisement

Predictive Adaptive Kalman Filter and Its Application to INS/UWB-integrated Human Localization with Missing UWB-based Measurements

  • Yuan XuEmail author
  • Tao Shen
  • Xi-Yuan Chen
  • Li-Li Bu
  • Ning Feng
Research Article

Abstract

In order to improve the accuracy of the data fusion filter, a tightly-coupled ultra wide band (UWB)/inertial navigation system (INS)-integrated scheme for indoor human navigation will be investigated in this paper. In this scheme, the data fusion filter employs the difference between the INS-measured and UWB-measured distances as the observation. Moreover, the predictive adaptive Kalman filter (PAKF) for the tightly-coupled INS/UWB-integrated human tracking model with missing data of the UWB-measured distance will be designed, which considers the missing data of the UWB-based distance and employs the predictive UWB-measured distance. Real test results will be done to compare the performance of the Kalman filter (KF), adaptive Kalman filter (AKF), and the PAKF. The test results show that the performance of the AKF is better than the KF. Moreover, the proposed PAKF is able to maintain the performance of the filter when the UWB-based measurement is unavailable.

Keywords

Indoor human localization tightly-coupled model predictive filtering Kalman filter missing data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61803175 and 61773239), the China Postdoctoral Science Foundation (No. 2017 M622204), the Shandong Provincial Natural Science Foundation, China (Nos. ZR2018LF010 and ZR2015JL020), the High School Science and Technology Project in Shandong Province (No. J18KA333), and the Doctoral Foundation of the University of Jinan, China (No. XBS1503).

References

  1. [1]
    A. R. J. Ruiz, F. S. Granja, J. C. P. Honorato, J. I. G. Rosas. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements. IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 1, pp. 178–189, 2011. DOI: 10.1109/TIM.2011.2159317.CrossRefGoogle Scholar
  2. [2]
    M. Y. Zhang, G. H. Tian, C. C. Li, J. Gong. Learning to transform service instructions into actions with reinforcement learning and knowledge base. International Journal of Automation and Computing, vol. 15, no. 5, pp. 582–592, 2018. DOI: 10.1007/s11633-018-1128-9.CrossRefGoogle Scholar
  3. [3]
    J. Gimenez, A. Amicarelli, J. M. Toibero, F. Di Sciascio, R. Carelli. Iterated conditional modes to solve simultaneous localization and mapping in Markov random fields context. International Journal of Automation and Computing, vol. 15, no. 3, pp. 310–324, 2018. DOI: 10.1007/s11633-017-1109-4.CrossRefGoogle Scholar
  4. [4]
    Y. Xu, Y. S. Shmaliy, Y. Y. Li, X. Y. Chen. UWB-based indoor human localization with time-delayed data using EFIR filtering. IEEE Access, vol. 5, pp. 16676–16683, 2017. DOI: 10.1109/ACCESS.2017.2743213.CrossRefGoogle Scholar
  5. [5]
    Y. L. Sun, W. X. Meng, C. Li, N. Zhao, K. L. Zhao, N. T. Zhang. Human localization using multi-source heterogeneous data in indoor environments. IEEE Access, vol. 5, pp. 812–822, 2017. DOI: 10.1109/ACCESS.2017.2650953.CrossRefGoogle Scholar
  6. [6]
    Z. F. Wu, Q. Xu, Z. Y. Wang, B. Chen, Q. Xuan. Passive indoor human localization based on channel state information. Journal of Harbin Engineering University, vol. 38, no. 8, pp. 1328–1334, 2017. DOI: 10.11990/jheu.201605001. (in Chinese)Google Scholar
  7. [7]
    C. L. Wang, T. M. Wang, J. H. Liang, Y. C. Zhang, Y. Zhou. Bearing-only visual SLAM for small unmanned aerial vehicles in GPS-denied environments. International Journal of Automation and Computing, vol. 10, no. 5, pp. 387–396, 2013. DOI: 10.1007/s11633-013-0735-8.CrossRefGoogle Scholar
  8. [8]
    J. Yang, J. F. Ma, X. N. Liu, L. N. Qi, Z. Wang, Y. Zhuang, L. X. Shi. A height constrained adaptive Kalman filtering based on climbing motion model for GNSS positioning. IEEE Sensors Journal, vol. 17, no. 21, pp. 7105–7113, 2017. DOI: 10.1109/JSEN.2017.2752751.CrossRefGoogle Scholar
  9. [9]
    Y. H. Liu, X. Q. Fan, C. Lv, J. Wu, L. Li, D. W. Ding. An innovative information fusion method with adaptive Kal-man filter for integrated INS/GPS navigation of autonomous vehicles. Mechanical Systems and Signal Processing, vol. 100, pp. 605–616, 2018. DOI: 10.1016/j.ymssp.2017.07.051.CrossRefGoogle Scholar
  10. [10]
    B. Y. Chen, Y. S. Sun, G. Y. Chen, Z. X. Sun, L. H. Wu. A dynamic target GPS localization algorithm based on Kalman filter. Journal of Harbin University of Science and Technology, vol. 21, no. 4, pp. 1–6, 2016. DOI: 10.15938/j.jhust.2016.04.001. (in Chinese)Google Scholar
  11. [11]
    H. L. Xiong, J. Tang, H. J. Xu, W. S. Zhang, Z. F. Du. A robust single GPS navigation and positioning algorithm based on strong tracking filtering. IEEE Sensors Journal, vol. 18, no. 1, pp. 290–298, 2018. DOI: 10.1109/JSEN.2017. 2767066.CrossRefGoogle Scholar
  12. [12]
    S. C. Zhou, R. Yan, J. X. Li, Y. K. Chen, H. J. Tang. A brain-inspired SLAM system based on ORB features. International Journal of Automation and Computing, vol. 14, no. 5, pp. 564–575, 2017. DOI: 10.1007/s11633-017-1090-y.CrossRefGoogle Scholar
  13. [13]
    X. H. Li, M. X. Miao, H. Liu, J. F. Ma, K. C. Li. An incentive mechanism for K-anonymity in LBS privacy protection based on credit mechanism. Soft Computing, vol. 21, no. 14, pp. 3907–3917, 2017. DOI: 10.1007/s00500-016-2040-2.CrossRefGoogle Scholar
  14. [14]
    A. M. Rao, K. Ramji, B. S. K. S. S. Rao, V. Vasu, C. Puneeth. Navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, 2017. DOI: 10.1007/s11633-016-1042-y.CrossRefGoogle Scholar
  15. [15]
    A. Sharma, A. T. Hoang, M. S. Reynolds. Long-range battery-free UHF RFID with a single wire transmission line. IEEE Sensors Journal, vol. 17, no. 17, pp. 5687–5693, 2017. DOI: 10.1109/JSEN.2017.2727494.CrossRefGoogle Scholar
  16. [16]
    Y. Zhuang, Y. Li, L. N. Qi, H. Y. Lan, J. Yang, N. ElSheimy. A two-filter integration of MEMS sensors and WiFi fingerprinting for indoor positioning. IEEE Sensors Journal, vol. 16, no. 13, pp. 5125–5126, 2016. DOI: 10. 1109/JSEN.2016.2567224.CrossRefGoogle Scholar
  17. [17]
    N. Decarli, F. Guidi, D. Dardari. Passive UWB RFID for tag localization: Architectures and design. IEEE Sensors Journal, vol. 16, no. 5, pp. 1385–1397, 2016. DOI: 10.1109/JSEN.2015.2497373.CrossRefGoogle Scholar
  18. [18]
    J. J. Pomarico-Franquiz, Y. S. Shmaliy. Accurate self-localization in RFID tag information grids using FIR filtering. IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1317–1326, 2014. DOI: 10.1109/TII.2014. 2310952.CrossRefGoogle Scholar
  19. [19]
    C. S. Wu, Z. Yang, Z. M. Zhou, Y. H. Liu, M. Y. Liu. Mitigating large errors in WiFi-based indoor localization for smartphones. IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 6246–6257, 2017. DOI: 10.1109/TVT.2016.2630713.CrossRefGoogle Scholar
  20. [20]
    H. Jiang, C. Liu, Y. Zhang, H. J. Cui. Fast 3D node localization in multipath for UWB wireless sensor networks using modified propagator method. International Journal of Distributed Sensor Networks, vol. 10, no. 2, 2014. DOI: 10.1155/2014/312535.Google Scholar
  21. [21]
    M. Hou, Y. Xu, X. Liu. Robust self-contained pedestrian navigation by fusing the IMU and compass measurements via UFIR filtering. Journal of Electrical and Computer Engineering, vol. 2018, Article number 8401967, 2018. DOI: 10.1155/2018/8401967.Google Scholar
  22. [22]
    E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38–46, 2005. DOI: 10.1109/MCG.2005.140.CrossRefGoogle Scholar
  23. [23]
    M. Y. Zhong, J. Guo, Z. H. Yang. On real time performance evaluation of the inertial sensors for INS/GPS integrated systems. IEEE Sensors Journal, vol. 16, no. 17, pp. 6652–6661, 2016. DOI: 10.1109/JSEN.2016.2588140.CrossRefGoogle Scholar
  24. [24]
    X. M. Wang, W. B. Ni. An improved particle filter and its application to an INS/GPS integrated navigation system in a serious noisy scenario. Measurement Science and Technology, vol. 27, no. 9, Article number 095005, 2016. DOI: 10.1088/0957-0233/27/9/095005.Google Scholar
  25. [25]
    G. C. Fan, D. Song, C. D. Xu. Modified observation model in tightly-coupled INS/GPS integration. Journal of Beijing Institute of Technology, vol. 26, no. 1, pp. 16–28, 2017. DOI: 10.15918/j.jbit1004-0579.201726.0104.Google Scholar
  26. [26]
    M. Y. Zhong, J. Guo, D. H. Zhou. Adaptive in-flight alignment of INS/GPS systems for aerial mapping. IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 3, pp. 1184–1196, 2018. DOI: 10.1109/TAES. 2017.2776058.CrossRefGoogle Scholar
  27. [27]
    H. Z. Han, J. Wang. Robust GPS/BDS/INS tightly coupled integration with atmospheric constraints for longrange kinematic positioning. GPS Solutions, vol. 21, no. 3, pp. 1285–1299, 2017. DOI: 10.1007/s10291-017-0612-y.CrossRefGoogle Scholar
  28. [28]
    L. L. Bu, Y. Zhang, Y. Xu. Indoor pedestrian tracking by combining recent INS and UWB measurements. In Proceedings of International Conference on Advanced Mechatronic Systems, IEEE, Xiamen, China, pp. 244–248, 2017. DOI: 10.1109/ICAMechS.2017.8316479.Google Scholar
  29. [29]
    Y. Zhuang, H. Y. Lan, Y. Li, N. El-Sheimy. PDR/INS/WiFi integration based on handheld devices for indoor pedestrian navigation. Micromachines, vol. 6, no. 6, pp. 793–812, 2015. DOI: 10.3390/mi6060793.CrossRefGoogle Scholar
  30. [30]
    T. Z. Lv, C. X. Zhao, H. F. Zhang. An improved fast-SLAM algorithm based on revised genetic resampling and SR-UPF. International Journal of Automation and Computing, vol. 15, no. 3, pp. 325–334, 2018. DOI: 10.1007/s11633-016-1050-y.CrossRefGoogle Scholar
  31. [31]
    D. Nada, M. Bousbia-Salah, M. Bettayeb. Multi-sensor data fusion for wheelchair position estimation with unscented Kalman filter. International Journal of Automation and Computing, vol. 15, no. 2, pp. 207–217, 2018. DOI: 10.1007/s11633-017-1065-z.CrossRefGoogle Scholar
  32. [32]
    M. Zorzi. Robust Kalman filtering under model perturbations. IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2902–2907, 2017. DOI: 10.1109/TAC.2016. 2601879.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Liu, B. G. Cai, J. Wang. Cooperative localization of connected vehicles: Integrating GNSS with DSRC using a robust cubature Kalman filter. IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 8, pp. 2111–2125, 2017. DOI: 10.1109/TITS.2016.2633999.CrossRefGoogle Scholar
  34. [34]
    D. Q. Huang, J. X. Xu, X. Deng, V. Venkataramanan, T. C. T. Huynh. Differential evolution based high-order peak filter design with application to compensation of contact-induced vibration in HDD servo systems. International Journal of Automation and Computing, vol. 14, no. 1, pp. 45–56, 2017. DOI: 10.1007/s11633-016-1034-y.CrossRefGoogle Scholar
  35. [35]
    A. R. Jimnez, F. Seco, J. C. Prieto, J. Guevara. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In Proceedings of the 7th Workshop on Positioning, Navigation and Communication, IEEE, Dresden, Germany, pp. 135–143, 2010. DOI: 10.1109/WPNC.2010.5649300.Google Scholar
  36. [36]
    N. Agrawal, A. Kumar, V. Bajaj, G. K. Singh. High order stable infinite impulse response filter design using cuckoo search algorithm. International Journal of Automation and Computing, vol. 14, no. 5, pp. 589–602, 2017. DOI: 10.1007/s11633-017-1091-x.CrossRefGoogle Scholar
  37. [37]
    Y. L. Hsu, J. S. Wang, C. W. Chang. A wearable inertial pedestrian navigation system with quaternion-based extended Kalman filter for pedestrian localization. IEEE Sensors Journal, vol. 17, no. 10, pp. 3193–3206, 2017. DOI: 10.1109/JSEN.2017.2679138.CrossRefGoogle Scholar
  38. [38]
    Y. S. Shmaliy, S. Y. Zhao, C. K. Ahn. Unbiased finite impluse response filtering: An iterative alternative to Kalman filtering ignoring noise and initial conditions. IEEE Control Systems Magazine, vol. 37, no. 5, pp. 70–89, 2017. DOI: 10.1109/MCS.2017.2718830.CrossRefGoogle Scholar
  39. [39]
    S. Y. Zhao, Y. S. Shmaliy, C. K. Ahn, F. Liu. Adaptive-horizon iterative UFIR filtering algorithm with applications. IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6393–6402, 2018. DOI: 10.1109/TIE.2017.2784405.CrossRefGoogle Scholar
  40. [40]
    Y. S. Shmaliy, F. Lehmann, S. Y. Zhao, C. K. Ahn. Comparing robustness of the Kalman, Hinf, and UFIR filters. IEEE Transactions on Signal Processing, vol. 66, no. 13, pp. 3447–3458, 2018. DOI: 10.1109/TSP.2018.2833811.MathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Y. Zhao, Y. S. Shmaliy, P. Shi, C. K. Ahn. Fusion Kalman/UFIR filter for state estimation with uncertain parameters and noise statistics. IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3075–3083, 2017. DOI: 10.1109/TIE.2016.2636814.CrossRefGoogle Scholar
  42. [42]
    L. L. Bu, Y. Zhang, Y. Xu, X. Y. Chen. Robust tightlycoupled INS/UWB-integrated human localization using UFIR filtering. In Proceedings of Instrumentation and Measurement Technology Conference, IEEE, Houston, USA, 2018. DOI: 10.1109/I2MTC.2018.8409558.Google Scholar
  43. [43]
    Y. Xu, X. Y. Chen, J. Cheng, Q. J. Zhao, Y. M. Wang. Improving tightly-coupled model for indoor pedestrian navigation using foot-mounted IMU and UWB measurements. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference, IEEE, Taipei, China, 2016. DOI: 10.1109/I2MTC.2016.7520489.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of JinanJinanChina
  2. 2.School of Instrument Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations