Advertisement

Synthesizing Robot Programs with Interactive Tutor Mode

  • Hao Li
  • Yu-Ping WangEmail author
  • Tai-Jiang Mu
Research Article

Abstract

With the rapid development of the robotic industry, domestic robots have become increasingly popular. As domestic robots are expected to be personal assistants, it is important to develop a natural language-based human-robot interactive system for end-users who do not necessarily have much programming knowledge. To build such a system, we developed an interactive tutoring framework, named “Holert”, which can translate task descriptions in natural language to machine-interpretable logical forms automatically. Compared to previous works, Holert allows users to teach the robot by further explaining their intentions in an interactive tutor mode. Furthermore, Holert introduces a semantic dependency model to enable the robot to “understand” similar task descriptions. We have deployed Holert on an open-source robot platform, Turtlebot 2. Experimental results show that the system accuracy could be significantly improved by 163.9% with the support of the tutor mode. This system is also efficient. Even the longest task session with 10 sentences can be handled within 0.7 s.

Keywords

Human-robot interaction semantic parsing program synthesis intelligent robotic systems natural language understanding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Tsinghua University Initiative Scientific Research Program (No. 20141081140).

References

  1. [1]
    J. Scholtz. Theory and evaluation of human robot interactions. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, IEEE, Big Island, USA, 2003. DOI: 10.1109/HICSS.2003.1174284.Google Scholar
  2. [2]
    I. G. Alonso, M. Fernández, J. M. Maestre, M. del Pilar Almudena García Fuente. Service Robotics within the Digital Home: Applications and Future Prospects, Dordrecht, Holland: Springer, 2011. DOI: 10.1007/978-94-007-1491-5.CrossRefGoogle Scholar
  3. [3]
    R Borja, J. R. De La Pinta, A. Álvarez, J. M. Maestre. Integration of service robots in the smart home by means of UPnP: A surveillance robot case study. Robotics and Autonomous Systems, vol. 61, no. 2, pp. 153–160, 2013. DOI: 10.1016/j.robot.2012.10.005.CrossRefGoogle Scholar
  4. [4]
    C. Zhou, M. H. Jin, Y. C. Liu, Z. Zhang, Y. Liu, H. Liu. Singularity robust path planning for real time base attitude adjustment of free-floating space robot. International Journal of Automation and Computing, vol. 14, no. 2, pp. 169–178, 2017. DOI: 10.1007/s11633-017-1055-1.CrossRefGoogle Scholar
  5. [5]
    K. C. D. Fu, Y. Nakamura, T. Yamamoto, H. Ishiguro. Analysis of motor synergies utilization for optimal movement generation for a human-like robotic arm. International Journal of Automation and Computing, vol. 10, no. 6, pp. 515–524, 2013. DOI: 10.1007/s11633-013-0749-2.CrossRefGoogle Scholar
  6. [6]
    S. Alexandrova, Z. Tatlock, M. Cakmak. RoboFlow: A flow-based visual programming language for mobile manipulation tasks. In Proceedings of IEEE International Conference on Robotics and Automation, Seattle, USA, pp. 5537–5544, 2015. DOI: 10.1109/ICRA.2015.7139973.Google Scholar
  7. [7]
    C. Datta, C. Jayawardena, I. H. Kuo, B. A. MacDonald. RoboStudio: A visual programming environment for rapid authoring and customization of complex services on a personal service robot. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, pp. 2352–2357, 2012. DOI: 10.1109/IROS.2012.6386105.Google Scholar
  8. [8]
    J. Li, A. Q. Xu, G. Dudek. Graphical state space programming: A visual programming paradigm for robot task specification. In Proceedings of IEEE International Confer-ence on Robotics and Automation, Shanghai, China, pp. 4846–4853, 2011. DOI: 10.1109/ICRA.2011.5979630.Google Scholar
  9. [9]
    M. A. Goodrich, A. C. Schultz. Human-robot interaction: A survey. Foundations and Trends in Human-computer Interaction, vol. 1, no. 3, pp. 203–275, 2007. DOI: 10.1561/1100000005.CrossRefzbMATHGoogle Scholar
  10. [10]
    J. Dzifcak, M. Scheutz, C. Baral, P. Schermerhorn. What to do and how to do it: Translating natural language directives into temporal and dynamic logic representation for goal management and action execution. In Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 4163–4168, 2009. DOI: 10.1109/ROBOT.2009.5152776.Google Scholar
  11. [11]
    C. Matuszek, E. Herbst, L. Zettlemoyer, D. Fox. Learning to parse natural language commands to a robot control system. In Proceedings of the 13th International Symposium on Experimental Robotics, Springer, Heidelberg, Germany, 403–415, 2013. DOI: 10.1007/978-3-319-00065-7_28.Google Scholar
  12. [12]
    R. F. Ge, R. J. Mooney. A statistical semantic parser that integrates syntax and semantics. In Proceedings of the 9th Conference on Computational Natural Language Learning, Association for Computational Linguistics, Ann Arbor, USA, 9–16, 2005. DOI: 10.3115/1706543.1706546.Google Scholar
  13. [13]
    K. Zhao, L. Huang. Type-driven incremental semantic parsing with polymorphism. In Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the ACL, Denver, USA, 2015. DOI: 10.3115/v1/N15-1162.Google Scholar
  14. [14]
    Y. Artzi, L. Zettlemoyer. Bootstrapping semantic parsers from conversations. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 421–432, 2011.Google Scholar
  15. [15]
    J. Berant, A. Chou, R. Frostig, P. Liang. Semantic parsing on freebase from question-answer pairs. In Proceedings of Conference on Empirical Methods in Natural Language Processing, Washington, USA, 2013.Google Scholar
  16. [16]
    L. Dong, M. Lapata. Language to logical form with neural attention. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016. DOI: 10.18653/v1/P16-1004.Google Scholar
  17. [17]
    Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014. DOI: 10.3115/v1/D14-1181.Google Scholar
  18. [18]
    Y. N. Dauphin, D. Z. Hakkani-Tur, G. Tur, L. P. Heck. Deep learning for semantic parsing including semantic utterance classification, USA. Patent 20150310862, October 2015.Google Scholar
  19. [19]
    R. Collobert, J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, 160–167, 2008. DOI: 10.1145/1390156.1390177.Google Scholar
  20. [20]
    Z. P. Tu, Z. D. Lu, Y. Liu, X. H. Liu, H. Li. Modeling coverage for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016. DOI: 10.18653/v1/P16-1008.Google Scholar
  21. [21]
    A. M. Rush, S. Chopra, J. Weston. A neural attention model for sentence summarization. In Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015. DOI: 10.18653/v1/D15-1044.Google Scholar
  22. [22]
    M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng. ROS: An open-source robot operating system. In Proceedings of ICRA Workshop on Open Source Software, Kobe, Japan, 2009.Google Scholar
  23. [23]
    A. Voutilainen. Part-of-speech tagging. The Oxford Handbook of Computational Linguistics, R. Mitkov, Ed., Oxford, UK: Oxford University Press, 219–232, 2003.Google Scholar
  24. [24]
    D. Q. Chen, C. Manning. A fast and accurate dependency parser using neural networks. In Proceedings of Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Doha, Qatar, 2014.Google Scholar
  25. [25]
    G. Look, B. Kottahachchi, R. Laddaga, H. Shrobe. A location representation for generating descriptive walking directions. In Proceedings of the 10th International Conference on Intelligent User Interfaces, ACM, San Diego, USA, 122–129, 2005. DOI: 10.1145/1040830.1040862.Google Scholar
  26. [26]
    T. Kollar, S. Tellex, D. Roy, N. Roy. Toward understanding natural language directions. In Proceedings of the 5th ACM/IEEE International Conference on Human-robot Interaction, Osaka, Japan, 259–266, 2010. DOI: 10.1109/HRI.2010.5453186.Google Scholar
  27. [27]
    G. Bugmann, E. Klein, S. Lauria, T. Kyriacou. Corpusbased robotics: A route instruction example. In Proceedings of the 8th International Conference on Intelligent Autonomous Systems, Amsterdam, Netherlands, 96–103, 2004.Google Scholar
  28. [28]
    M. MacMahon, B. Stankiewicz, B. Kuipers. Walk the talk: Connecting language, knowledge, and action in route instructions. In Proceedings of National Conference on Artificial Intelligence, AAAI, Austin, UK, 2006.Google Scholar
  29. [29]
    P. E. Rybski, J. Stolarz, K. Yoon, M. Veloso. Using dialog and human observations to dictate tasks to a learning robot assistant. Intelligent Service Robotics, vol. 1, no. 2, pp. 159–167, 2008. DOI: 10.1007/s11370-008-0016-5.CrossRefGoogle Scholar
  30. [30]
    J. Thomason, S. Q. Zhang, R. J. Mooney, P. Stone. Learning to interpret natural language commands through human-robot dialog. In Proceedings of the 24th International Conference on Artificial Intelligence, AAAI, Buenos Aires, Argentina, 1923–1929, 2015.Google Scholar
  31. [31]
    L. B. She, S. H. Yang, Y. Cheng, Y. Y. Jia, J. Y. Chai, N. Xi. Back to the blocks world: Learning new actions through situated human-robot dialogue. In Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Philadelphia, USA, 89–97, 2014.CrossRefGoogle Scholar
  32. [32]
    E. Grefenstette, P. Blunsom, N. de Freitas, K. M. Hermann. A deep architecture for semantic parsing. In Proceedings of the ACL Workshop on Semantic Parsing, Association for Computational Linguistics, Baltimore, USA, 2014.Google Scholar
  33. [33]
    N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, A. Swami. The limitations of deep learning in adversarial settings. In Proceedings of IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 372–387, 2016. DOI: 10.1109/EuroSP.2016.36.Google Scholar
  34. [34]
    B. Biggio, B. Nelson, P. Laskov. Support vector machines under adversarial label noise. In Proceedings of the 3rd Asian Conference on Machine Learning, Taoyuan, China, 97–112, 2011.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations