Advertisement

Predictive Control Based on Fuzzy Supervisor for PWARX Hybrid Model

  • Olfa YahyaEmail author
  • Zeineb Lassoued
  • Kamel Abderrahim
Research Article

Abstract

In this paper, the problem of hybrid model predictive control (HMPC) strategy based on fuzzy supervisor for piecewise autoregressive with exogenous input (PWARX) models is addressed. We first represent the nonlinear behavior of the system with a PWARX model. Then, we transform the obtained PWARX model into a mixed logical dynamic (MLD) model in order to apply the proposed predictive control which is able to stabilize such systems along desired reference trajectories while satisfying operating constraints. Finally, we propose to introduce a fuzzy supervisor allowing the readjustment of the HMPC tuning parameters in order to maintain the desired performance. Simulation and experimental results are presented to illustrate the effectiveness of the proposed approach.

Keywords

Nonlinear control hybrid systems mixed logical dynamic (MLD) model predictive control fuzzy supervisor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. F. Camacho, D. R. Ramirez, L. Limon, D. M. de l. Pena, T. Alamo. Model predictive control techniques for hybrid systems. Annual Reviews in Control, vol. 34, no. 1, pp. 21–31, 2010. Doi: 10.1016/j.arcontrol.2010.02.002.CrossRefGoogle Scholar
  2. [2]
    D. M. Liu, S. Y. Li. Predictive zone control of pressure management for water supply network systems. International Journal of Automation and Computing, vol. 13, no. 6, pp. 607–614, 2016. Doi: 10.1007/s11633–015–0935–5.CrossRefGoogle Scholar
  3. [3]
    M. Taleb, E. Leclercq, D. Lefebvre. Model predictive control for discrete and continuous timed petri nets. International Journal of Automation and Computing, vol. 15, no. 1, pp. 25–38, 2018. Doi: 10.1007/s11633–016–1046–7.CrossRefzbMATHGoogle Scholar
  4. [4]
    P. Karelovic, E. Putz, A. Cipriano. A framework for hybrid model predictive control in mineral processing. Control Engineering Practice, vol. 40, pp. 1–12, 2015. DOI: 10.1016/j.conengprac.2015.02.006.Google Scholar
  5. [5]
    M. Ramasamy, S. S. Narayanan, D. P. Rao. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control, vol. 15, no. 3, pp. 273–283, 2005. DOI: 10.1016/j.jprocont.2004.06.006.CrossRefGoogle Scholar
  6. [6]
    X. Q. Sun, C. C. Yuan, Y. F. Cai, S. H. Wang, L. Chen. Model predictive control of an air suspension system with damping multi–mode switching damper based on hybrid model. Mechanical Systems and Signal Processing, vol. 94, pp. 94–110, 2017. DOI: 10.1016/j.ymssp.2017.02.033.Google Scholar
  7. [7]
    A. G. Parlos, S. Parthasarathy, A. F. Atiya. Neuro–predictive process control using online controller adaptation. IEEE Transactions on Control Systems Technology, vol. 9, no. 5, pp. 741–755, 2001. DOI: 10.1109/87.944469.CrossRefGoogle Scholar
  8. [8]
    M. Xu, S. Y. Li. Practical generalized predictive control with decentralized identification approach to HVAC systems. Energy Conversion and Management, vol. 48, no. 1, pp. 292–299, 2007. DOI: 10.1016/j.enconman.2006.04.012.CrossRefGoogle Scholar
  9. [9]
    B. Liu. Exact controllability of a hybrid system, membrane with strings, on general polygon domains. Journal of Dynamical and Control Systems, vol. 4, no. 1, pp. 29–47, 1998. DOI: 10.1023/A:1022868815952.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Paoletti, A. L. Juloski, G. Ferrari–Trecate, R. Vidal. Identification of hybrid systems a tutorial. European Journal of Control, vol. 13, no. 2–3, pp. 242–260, 2007. DOI: 10.3166/ejc.13.242–260.CrossRefzbMATHGoogle Scholar
  11. [11]
    J. N. Lin, R. Unbehauen. Canonical piecewise–linear ap–proximations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 39, no. 8, pp. 697–699, 1992. Doi: 10.1109/81.168933.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Zeroual, N. Messai, S. Kechida, F. Hamdi. A piecewise switched linear approach for traffic flow modeling. International Journal of Automation and Computing, vol. 14, no. 6, pp. 729–741, 2017. Doi: 10.1007/s11633–017–1060–4.CrossRefGoogle Scholar
  13. [13]
    X. Feng, K. A. Loparo, Y. Ji, H. J. Chizeck. Stochastic stability properties of jump linear systems. IEEE transactions on Automatic Control, vol. 37, no. 1, pp. 38–53, 1992. Doi: 10.1109/9.109637.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Doucet, N. J. Gordon, V. Krishnamurthy. Particle filters for state estimation of jump markov linear systems. IEEE Transactions on signal processing, vol. 49, no. 3, pp. 613–624, 2001. DOI: 10.1109/78.905890.CrossRefGoogle Scholar
  15. [15]
    A. Bemporad, M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, vol. 35, no. 3, pp. 407–427, 1999. DOI: 10.1016/S0005–1098(98) 00178–2.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    B. D. Schutter, T. Van den Boom. Model predictive control for max–min–plus–scaling discrete event systems. Automatica, vol. 37, no. 7, pp. 1049–1056, 2001. DOI: 10. 1016/S0005–1098(01)00054–1.CrossRefzbMATHGoogle Scholar
  17. [17]
    W. P. M. H. Heemels, B. D. Schutter, A. Bemporad. Equivalence of hybrid dynamical models. Automatica, vol. 37, no. 7, pp. 1085–1091, 2001. DOI: 10.1016/S0005–1098(01) 00059–0.CrossRefzbMATHGoogle Scholar
  18. [18]
    M. Baoti, F. J. Christophersen, M. Morari. Constrained optimal control of hybrid systems with a linear performance index. IEEE Transactions on Automatic Control, vol. 51, no. 12, pp. 1903–1919, 2006. DOI: 10.1109/TAC.2006. 886486.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Fiacchini, T. Alamo, I. Alvarado, E. F. Camacho. Safety verification and adaptive model predictive control of the hybrid dynamics of a fuel cell system. International Journal of Adaptive Control and Signal Processing, vol. 22, no. 2, pp. 142–160, 2008. DOI: 10.1002/(ISSN)1099–1115.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Y. Zou, S. Y. Li. Robust model predictive control for piecewise affine systems. Circuits, Systems & Signal Processing, vol. 26, no. 3, pp. 393–406, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. Putz, A. Cipriano. Hybrid model predictive control for flotation plants. Minerals Engineering, vol. 70, pp. 26–35, 2015. DOI: 10.1016/j.mineng.2014.08.013.CrossRefGoogle Scholar
  22. [22]
    A. Makhorin. GLPK (GNU Linear Programming Kit) Users Guide, 2003.Google Scholar
  23. [23]
    IBM ILOG. Cplex optimization studio cplex user's manual, 2015.Google Scholar
  24. [24]
    XPRESS–MP User Guide. Dash Associates. Blisworth House, Blisworth, Northants, UK, 1997.Google Scholar
  25. [25]
    V. Kumar, K. P. S. Rana, J. Kumar, P. Mishra, S. Nair. A robust fractional order fuzzy p + fuzzy i+ fuzzy D controller for nonlinear and uncertain system. International Journal of Automation and Computing, vol. 14, no. 4, pp. 474–488, 2017. DOI: 10.1007/s11633–016–0981–7.CrossRefGoogle Scholar
  26. [26]
    E. H. Mamdani, S. Assilian. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man–machine Studies, vol. 7, no. 1, pp. 1–13, 1975. DOI: 10.1016/S0020–7373(75)80002–2.CrossRefzbMATHGoogle Scholar
  27. [27]
    C. L. Zhang, Y. P. Xu, Z. J. Xu, J. He, J. Wang, J. H. Adu. A fuzzy neural network based dynamic data allocation model on heterogeneous multi–GPUs for large–scale computations. International Journal of Automation and Computing, vol. 15, no. 2, pp. 181–193, 2018. DOI: 10.1007/s11633–018–1120–4.CrossRefGoogle Scholar
  28. [28]
    L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, vol. SMC–3, no. 1, pp. 28–44, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Ö. Efe. Fuzzy variable structure control of a class of nonlinear sampled–data systems. Journal of Dynamical and Control Systems, vol. 9, no. 2, pp. 233–256, 2003. DOI: 10.1023/A:1023237722307.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    T. J. Ross. Fuzzy Logic with Engineering Applications, New York, USA: John Wiley & Sons, 2009.Google Scholar
  31. [31]
    R. Be Abdennour, M. Ksouri, G. Favier. Application of fuzzy logic to the on–line adjustment of the parameters of a generalized predictive controller. Intelligent Automation & Soft Computing, vol. 4, no. 3, pp. 197–213, 1998.CrossRefGoogle Scholar
  32. [32]
    G. Ferrari–Trecate, M. Muselli, D. Liberati, M. Morari. A clustering technique for the identification of piecewise affine systems. Automatica, vol. 39, no. 2, pp. 205–217, 2003. DOI: 10.1016/S0005–1098(02)00224–8.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Bemporad, A. Garulli, S. Paoletti, A. Vicino. A bounded–error approach to piecewise affine system identification. IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1567–1580, 2005. DOI: 10.1109/TAC.2005. 856667.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    L. Bako, S. Lecoeuche. A sparse optimization approach to state observer design for switched linear systems. Systems and Control Letters, vol. 62, no. 2, pp. 143–151, 2013. DOI: 10.1016/j.sysconle.2012.11.017.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Bemporad, A. Garulli, S. Paoletti, A. Vicino. A greedy approach to identification of piecewise affine models. In Proceedings of International Workshop on Hybrid Systems: Computation and Control, Prague, Czech Republic, pp. 97–112, 2003.CrossRefGoogle Scholar
  36. [36]
    A. L. Juloski, S. Weiland, W. P. M. H. Heemels. A bayesian approach to identification of hybrid systems. IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1520–1533, 2005. DOI: 10.1109/TAC.2005.856649.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Z. Lassoued, K. Abderrahim. New results on PWARX model identification based on clustering approach. International Journal of Automation and Computing, vol. 11, no. 2, pp. 180–188, 2014. DOI: 10.1007/s11633–014–0779–4.CrossRefGoogle Scholar
  38. [38]
    L. Grune, J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms, Switzerland: Springer, 2011.CrossRefzbMATHGoogle Scholar
  39. [39]
    H. Gouta, S. HadSaid, F. M'sahli. Predictive and backstepping control of double tank process: a comparative study. IETE Technical Review, vol. 33, no. 2, pp. 137–147, 2016. DOI: 10.1080/02564602.2015.1052580.CrossRefGoogle Scholar
  40. [40]
    J. M. Maciejowski. Predictive Control with Constraints, Harlow, UK: Prentice Hall, 2000.zbMATHGoogle Scholar
  41. [41]
    W. P. M. H. Heemels, B. DeSchutter, A. Bemporad. On the equivalence of classes of hybrid dynamical models. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, USA, pp. 364–369, 2001.Google Scholar
  42. [42]
    F. D. Torrisi, A. Bemporad. Hysdel–a tool for generating computational hybrid models for analysis and synthesisproblems. IEEE Transactions on Control Systems Technology, vol. 12, no. 2, pp. 235–249, 2004. DOI: 10.1109/TCST. 2004.824309.CrossRefGoogle Scholar
  43. [43]
    B. Pregelj, S. Gerksic. Hybrid explicit model predictive control of a nonlinear process approximated with a piecewise affine model. Journal of Process Control, vol. 20, no. 7, pp. 832–839, 2010. DOI: 10.1016/j.jprocont.2010.05.002.CrossRefGoogle Scholar
  44. [44]
    A. Bemporad, D. M. del Pena. Multiobjective model predictive control. Automatica, vol. 45, no. 12, pp. 2823–2830, 2009. DOI: 10.1016/j.automatica.2009.09.032.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    F. B. Aicha, F. Bouani, M. Ksouri. A multivariable multiobjective predictive controller. International Journal of Applied Mathematics and Computer Science, vol. 23, no. 1, pp. 355, 2013. DOI: 10.2478/amcs–2013–0004.Google Scholar
  46. [46]
    J. Jantzen. Foundations of Fuzzy Control: A Practical Approach, 2nd ed., New York, USA: Wiley, 2013.CrossRefGoogle Scholar
  47. [47]
    L. P. Guo, J. Y. Hung, R. M. Nelms. Evaluation of DSPbased PID and fuzzy controllers for DC–DC converters. IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237–2248, 2009. DOI: 10.1109/TIE.2009.2016955.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Numerical Control of Industrial Processes, National Engineering School of GabesUniversity of GabesGabesTunisia

Personalised recommendations