Time-space Viewpoint Planning for Guard Robot with Chance Constraint

  • Igi ArdiyantoEmail author
  • Jun Miura
Research Article


This paper presents a novel movement planning algorithm for a guard robot in an indoor environment, imitating the job of human security. A movement planner is employed by the guard robot to continuously observe a certain person. This problem can be distinguished from the person following problem which continuously follows the object. Instead, the movement planner aims to reduce the movement and the energy while keeping the target person under its visibility. The proposed algorithm exploits the topological features of the environment to obtain a set of viewpoint candidates, and it is then optimized by a cost-based set covering problem. Both the robot and the target person are modeled using geodesic motion model which considers the environment shape. Subsequently, a particle model-based planner is employed, considering the chance constraints over the robot visibility, to choose an optimal action for the robot. Simulation results using 3D simulator and experiments on a real environment are provided to show the feasibility and effectiveness of our algorithm.


Guard robot viewpoint planning state-time space uncertainty topology chance-constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford, UK: Oxford University Press, 1987.zbMATHGoogle Scholar
  2. [2]
    V. Pinciu. A coloring algorithm for finding connected guards in art galleries. Discrete Mathematics and Theoretical Computer Science, C. S. Calude, M. J. Dinneen, V. Vajnovszki, Eds., Berlin Heidelberg, Germany: Springer, pp. 257–264, 2003. DOI: 10.1007/3-540-45066-1_20CrossRefGoogle Scholar
  3. [3]
    L. Erickson, S. LaValle. An art gallery approach to ensuring that landmarks are distinguishable. In Proceedings of International Conference on Robotics: Science and Systems, RSS, Los Angeles, USA, 2011.Google Scholar
  4. [4]
    A. Bottino, A. Laurentini. A nearly optimal algorithm for covering the interior of an art gallery. Pattern Recognition, vol. 44, no. 5, pp. 1048–1056, 2011. DOI: 10.1016/j.patcog.2010.11.010.CrossRefzbMATHGoogle Scholar
  5. [5]
    J. W. Durham, A. Franchi, F. Bullo. Distributed pursuitevasion with limited-visibility sensors via frontier-based exploration. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 3562–3568, 2010. DOI: 10.1109/ROBOT.2010.5509347.Google Scholar
  6. [6]
    N. Noori, A. Beveridge, V. Isler. Pursuit-evasion: A toolkit to make applications more accessible. IEEE Robotics & Automation Magazine, vol. 23, no. 4, pp. 138–149, 2016. DOI: 10.1109/MRA.2016.2540138.CrossRefGoogle Scholar
  7. [7]
    K. Klein, S. Suri. Capture bounds for visibility-based pursuit evasion. Computational Geometry, vol. 48, no. 3, pp. 205–220, 2015. DOI: 10.1016/j.comgeo.2014.10.002.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. V. Ramana, M. Kothari. Pursuit-evasion games of high speed evader. Journal of Intelligent & Robotic Systems, vol. 85, no. 2, pp. 293–306, 2017. DOI: 10.1007/s10846-016-0379-3.CrossRefGoogle Scholar
  9. [9]
    N. M. Stiffler, J. M. O’Kane. Complete and optimal visibility-based pursuit-evasion. The International Journal of Robotics Research, vol. 36, no. 8, pp. 923–946, 2017. DOI: 10.1177/0278364917711535.CrossRefGoogle Scholar
  10. [10]
    J. S. B. Mitchell. Approximating watchman routes. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, USA, pp. 844–855, 2013.Google Scholar
  11. [11]
    A. A. Ismail, S. Herdjunanto, P. Priyatmadi. Ant system algorithm for finding optimal path on travelling salesman problem with path restriction. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 1, no. 3, pp. 43–48, 2012.Google Scholar
  12. [12]
    H. Emadi, T. S. Gao, S. Bhattacharya. Visibility-based target-tracking game: Bounds and tracking strategies. IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1917–1924, 2017. DOI: 10.1109/LRA.2017.2714980.CrossRefGoogle Scholar
  13. [13]
    X. H. Tan. Approximation algorithms for the watchman route and zookeeper’s problems. Discrete Applied Mathematics, vol. 136, no. 2–3, pp. 363–376, 2004. DOI: 10.1016/S0166-218X(03)00451-7.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    N. Bellotto, H. S. Hu. People tracking with a mobile robot: a comparison of Kalman and particle filters. In Proceedings of the 13th IASTED International Conference on Robotics and Applications, ACTA Press, Anaheim, USA, 2007.Google Scholar
  15. [15]
    T. Linder, S. Breuers, B. Leibe, K. O. Arras. On multimodal people tracking from mobile platforms in very crowded and dynamic environments. In Proceedings of IEEE International Conference on Robotics and Automation, Stockholm, Sweden, pp. 5512–5519, 2016. DOI: 10.1109/ICRA.2016.7487766.Google Scholar
  16. [16]
    I. Ardiyanto, J. Miura. Real-time navigation using randomized kinodynamic planning with arrival time field. Robotics and Autonomous Systems, vol. 60, no. 12, pp. 1579–1591, 2012. DOI: 10.1016/j.robot.2012.09.011.CrossRefGoogle Scholar
  17. [17]
    R. Liu, G. Huskic, A. Zell. Dynamic objects tracking with a mobile robot using passive UHF RFID tags. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, USA, pp. 4247–4252, 2014. DOI: 10.1109/IROS.2014.6943161.Google Scholar
  18. [18]
    Q. J. Peng, X. M. Kang, T. T. Zhao. Effective virtual reality based building navigation using dynamic loading and path optimization. International Journal of Automation and Computing, vol. 6, no. 4, pp. 335–343, 2009. DOI: 10.1007/s11633-009-0335-9.CrossRefGoogle Scholar
  19. [19]
    A. M. Rao, K. Ramji, B. S. K. Sundara Siva Rao, V. Vasu, C. Puneeth. Navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, 2017. DOI: 10.1007/s11633-016-1042-y.CrossRefGoogle Scholar
  20. [20]
    B. Das, B. Subudhi, B. B. Pati. Cooperative formation control of autonomous underwater vehicles: an overview. International Journal of Automation and Computing, vol. 13, no. 3, pp. 199–225, 2016. DOI: 10.1007/s11633-016-1004-4.CrossRefGoogle Scholar
  21. [21]
    B. D. Ning, Q. L. Han, Z. Y. Zuo. Distributed optimization for multiagent systems: An edge-based fixed-time consensus approach. IEEE Transactions on Cybernetics, Online-first. DOI: 10.1109/TCYB.2017.2766762.Google Scholar
  22. [22]
    B. D. Ning, Q. L. Han, Z. Y. Zuo, J. Jin, J. C. Zheng. Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Transactions on Cybernetics, vol. 48, no. 5, pp. 1577–1590, 2018. DOI: 10.1109/TCYB.2017.2708321.CrossRefGoogle Scholar
  23. [23]
    Z. Y. Zuo, Q. L. Han, B. D. Ning, X. H. Ge, X. M. Zhang. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2322–2334, 2018. DOI: 10.1109/TII.2018.2817248.CrossRefGoogle Scholar
  24. [24]
    I. Ardiyanto, J. Miura. Visibility-based viewpoint planning for guard robot using skeletonization and geodesic motion model. In Proceedings of IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 652–658, 2013. DOI: 10.1109/ICRA.2013. 6630643.Google Scholar
  25. [25]
    S. Suzuki, K. Abe. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32–46, 1985. DOI: 10.1016/0734-189X(85)90016-7.CrossRefzbMATHGoogle Scholar
  26. [26]
    D. H. Douglas, T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973. DOI: 10.3138/FM57-6770-U75U-7727.CrossRefGoogle Scholar
  27. [27]
    D. Lee, A. Lin. Computational complexity of art gallery problems. IEEE Transactions on Information Theory, vol. 32, no. 2, pp. 276–282, 1986. DOI: 10.1109/TIT.1986. 1057165.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Fogel, D. Halperin, R. Wein. CGAL Arrangements and Their Applications–A Step-by-Step Guide, Berlin Heidelberg, Germany: Springer, 2012.CrossRefzbMATHGoogle Scholar
  29. [29]
    D. P. Williamson, D. B. Shmoys. The Design of Approximation Algorithms, New York, USA: Cambridge University Press, 2011.CrossRefzbMATHGoogle Scholar
  30. [30]
    J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1591–1595, 1996. DOI: 10.1073/pnas. 93.4.1591.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    L. Blackmore, M. Ono, B. C. Williams. Chance-constrained optimal path planning with obstacles. IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1080–1094, 2011. DOI: 10.1109/TRO.2011.2161160.CrossRefGoogle Scholar
  32. [32]
    J. P. Calliess, D. Lyons, U. D. Hanebeck. Lazy auctions for multi-robot collision avoidance and motion control under uncertainty. Advanced Agent Technology, F. Dechesne, H. Hattori, A. ter Mors, J. M. Such, D. Weyns, F. Dignum, Eds., Berlin Heidelberg, Germany: Springer, pp. 295–312, 2012. DOI: 10.1007/978-3-642-27216-5_21.CrossRefGoogle Scholar
  33. [33]
    N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W. K. Yoon. RT-middleware: distributed component middleware for RT (robot technology). In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 3933–3938, 2005. DOI: 10.1109/IROS.2005.1545521.Google Scholar
  34. [34]
    J. L. B. Claraco. Development of scientific applications with the mobile robot programming toolkit. The MRPT reference book, in Machine Perception and Intelligent Robotics Laboratory, University of Malaga, Malaga, Spain, 2008.Google Scholar
  35. [35]
    S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics, Cambridge, USA: The MIT Press, 2005.zbMATHGoogle Scholar
  36. [36]
    I. Ardiyanto, J. Miura. Heuristically arrival time fieldbiased (HeAT) random tree: An online path planning algorithm for mobile robot considering kinodynamic constraints. In Proceedings of IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, pp. 360–365, 2011. DOI: 10.1109/ROBIO.2011.6181312.Google Scholar
  37. [37]
    G. Echeverria, N. Lassabe, A. Degroote, S. Lemaignan. Modular open robots simulation engine: Morse. In Proceedings of IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 46–51, 2011. DOI: 10.1109/ICRA.2011.5980252.Google Scholar
  38. [38]
    I. Ardiyanto, Y. Okada, J. Miura. Rt components for using morse realistic simulator for robotics. In Proceedings of the 13th SICE System Integration Division Annual Conference, Fukuoka, Japan, pp. 535–538, 2012.Google Scholar
  39. [39]
    I. Ardiyanto, J. Miura. Partial least squares-based human upper body orientation estimation with combined detection and tracking. Image and Vision Computing, vol. 32, no. 11, pp. 904–915, 2014. DOI: 10.1016/j.imavis.2014.08.002.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyUniversitas Gadjah MadaYogyakartaIndonesia
  2. 2.Department of Computer Science and EngineeringToyohashi University of TechnologyAichiJapan

Personalised recommendations