Advertisement

Rotorcraft with a 3DOF Rigid Manipulator: Quaternion-based Modeling and Real-time Control Tolerant to Multi-body Couplings

  • J. Alvarez-Munoz
  • N. Marchand
  • J. F. Guerrero-Castellanos
  • J. J. Tellez-Guzman
  • J. Escareno
  • M. Rakotondrabe
Research Article

Abstract

This paper proposes a simple solution for the stabilization of a mini-quadcopter carrying a 3DoF (degrees of freedom) manipulator robot in order to enhance its achievable workspace and application profile. Since the motion of the arm induces torques which degrade the stability of the system, in the present work, we consider the stabilization of both subsystems: the quadcopter and the robotic arm. The mathematical model of the system is based on quaternions. Likewise, an attitude control law consisting of a bounded quaternion-based feedback stabilizes the quadcopter to a desired attitude while the arm is evolving. The next stage is the translational dynamics which is simplified for control (nonlinear) design purposes. The aforementioned controllers are based on saturation functions whose stability is explicitly proved in the Lyapunov sense. Finally, experimental results and a statistical study validate the proposed control strategy.

Keywords

Observer-based control quaternion and Newton-Euler modeling bounded-input control aerial manipulator disturbance rejection 

Notes

Acknowledgements

This work was supported by CONACYT-Mexico, LabEx PERSYVAL-Lab (No. ANR-11-LABX-0025) and Equipex ROBOTEX (No. ANR-10-EQPX-44-01).

References

  1. [1]
    D. Mellinger, M. Shomin, N. Michael, V. Kumar. Cooperative grasping and transport using multiple quadrotors. In Proceedings of International Symposium on Distributed Autonomous Robotic Systems, Springer, Lausanne, Switzerland, pp. 545–558, 2010.Google Scholar
  2. [2]
    M. Mohammadi, A. Franchi, D. Barcelli, D. Prattichizzo. Cooperative aerial tele-manipulation with haptic feedback. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, pp. 5092–5098, 2016. Doi: 10.1109/IROS.2016.7759747.Google Scholar
  3. [3]
    M. Orsag, C. Korpela, S. Bogdan, P. Oh. Lyapunov based model reference adaptive control for aerial manipulation. In Proceedings of International Conference on Unmanned Aircraft Systems, IEEE, Atlanta, USA, pp. 966–973, 2013. DOI: 10.1109/ICUAS.2013.6564783.Google Scholar
  4. [4]
    A. E. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, R. Cano. Control of an aerial robot with multi-link arm for assembly tasks. In Proceedings of IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 4916–4921, 2013. DOI: 10.1109/ICRA.2013. 6631279.Google Scholar
  5. [5]
    S. Kim, S. Choi, H. J. Kim. Aerial manipulation using a quadrotor with a two DOF robotic arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 4990 4995, 2013. DOI: 10.1109/IROS.2013.6697077.Google Scholar
  6. [6]
    J. Thomas, G. Loianno, J. Polin, K. Sreenath, V. Kumar. Toward autonomous avian-inspired grasping for micro aerial vehicles. Bioinspiration and Biomimetics, vol. 9, no. 2, Article number 025010, 2014. DOI: 10.1088/1748-3182/9/2/025010.Google Scholar
  7. [7]
    N. Sun, Y. C. Fang, H. Chen, B. Lu. Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2135–2146, 2017. DOI: 10.1109/TIE.2016.2623258.CrossRefGoogle Scholar
  8. [8]
    B. Yuksel, G. Buondonno, A. Franchi. Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, pp. 561–566, 2016. DOI: 10.1109/IROS.2016.7759109.Google Scholar
  9. [9]
    M. D. Shuster. A survey of attitude representations. The Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439–517, 1993.MathSciNetGoogle Scholar
  10. [10]
    P. Castillo, A. Dzul, R. Lozano. Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 510–516, 2004. DOI: 10.1109/TCST.2004.825052.CrossRefGoogle Scholar
  11. [11]
    J. F. Guerrero-Castellanos, N. Marchand, N. Hably, S. Lesecq, J. Delamare. Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor minihelicopter. Control Engineering Practice, vol. 19, no. 8, pp. 790–797, 2011. DOI: 10.1016/j.conengprac.2011.04. 004.CrossRefGoogle Scholar
  12. [12]
    A. Alaimo, V. Artale, C. Milazzo, A. Ricciardello, L. Trefiletti. Mathematical modeling and control of a hexacopter. In Proceedings of International Conference on Unmanned Aircraft Systems, IEEE, Atlanta, USA, pp. 1043–1050, 2013. DOI: 10.1109/ICUAS.2013.6564793.Google Scholar
  13. [13]
    S. Cho. Dynamics and Control of Underactuated Multibody Spacecraft, Ph. D. dissertation, University of Michigan, USA, 2002.Google Scholar
  14. [14]
    R. Cruz-Jose, J. F. Guerrero-Castellanos, W. F. Guerrero-Sánchez, J. J. Oliveros-Oliveros. Global stabilizarion of a VTOL mini aircraft. In rocedings of the National Conference of Automatic Control, Campeche, Mexico, pp. 180–185, 2012.Google Scholar
  15. [15]
    N. Marchand, A. Hably. Global stabilization of multiple integrators with bounded controls. Automatica, vol. 41, no. 12, pp. 2147–2152, 2005. DOI: 10.1016/j.automatica. 2005.07.004.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. R. Teel. Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & Control Letters, vol. 18, no. 3, pp. 165–171, 1992. DOI: 10.1016/0167-6911(92)90001-9.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E. N. Johnson, S. K. Kannan. Nested saturation with guaranteed real poles. In Proceedings of American Control Conference, IEEE, Denver, USA, vol. 1, pp. 497–502, 2003. DOI: 10.1109/ACC.2003.1239062.Google Scholar
  18. [18]
  19. [19]
    Build, run, and test real-time applications, [Online], Available: https://doi.org/fr.mathworks.com/products/simulink-realtime/, December 2017.
  20. [20]

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polytechnic Institute of Advanced SciencesParisFrance
  2. 2.GIPSA-LabUniv. Grenoble AlpesGrenobleFrance
  3. 3.Faculty of ElectronicsAutonomous University of Puebla (BUAP)PueblaMexico
  4. 4.XLIM Laboratory UMR CNRS 7252University of Limoges ENSIL - ENSCILimogesFrance
  5. 5.Automatic Control and Micro-Mechatronic DepartmentFEMTO-ST Institute, UMR CNRS-UFC/ENSMM/UTBMFR BesançonFrance

Personalised recommendations