Advertisement

Auto-tuning of FOPI Controllers for TITO Processes with Experimental Validation

  • Gargi BaruahEmail author
  • Somanath Majhi
  • Chitralekha Mahanta
Research Article

Abstract

In this paper, the auto-tuning of a fractional order proportional and integral (FOPI) controller is proposed and experimentally validated for two-input two-output (TITO) processes. The proposed method first identifies an unknown TITO plant into fractional order TITO model with time delay. Furthermore, decoupling the TITO process into two fractional order single-input single-output (SISO) transfer function models makes it easier for designing the decentralized FOPI controllers. The proposed control method is a generalization of both integer order and fractional order TITO systems depending on the value of the order of the model. One advantage of this method is the non-requirement of a-priori information of gain and phase crossover frequencies of the system while tuning the controllers. The proposed algorithm is validated both by simulation of a class of TITO process models as well as by experimental analysis of a coupled tank system (CTS).

Keywords

Auto-tuning fractional order proportional and integral (FOPI) two-input two-output (TITO) robust relay with hysteresis model reduction coupled tank system (CTS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Skogestad, M. Morari. Robust performance of decentralized control systems by independent designs. Automatica, vol. 25, no. 1, pp. 119–125, 1989. DOI: 10.1016/0005–1098 (89)90127–1.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Lee, W. Cho, T. F. Edgar. Multiloop PI controller tuning for interacting multivariable processes. Computers & Chemical Engineering, vol. 22, no. 11, pp. 1711–1723, 1998. Doi: 10.1016/S0098–1354(98)00230–0.CrossRefGoogle Scholar
  3. [3]
    W. L. Luyben. Simple method for tuning SISO controllers in multivariable systems. Industrial & Engineering Chemistry Process Design and Development, vol. 25, no. 3, pp. 654–660, 1986. DOI: 10.1021/i200034a010.CrossRefGoogle Scholar
  4. [4]
    Q. G. Wang, B. Zou, T. H. Lee, Q. Bi. Auto–tuning of multivariable PID controllers from decentralized relay feedback. Automatica, vol. 33, no. 3, pp. 319–330, 1997. DOI: 10.1016/S0005–1098(96)00177–X.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. P. Loh, V. U. Vasnani. Necessary conditions for limit cycles in multiloop relay systems. IET Proceedings — Control Theory and Applications, vol. 141, no. 3, pp. 163–168, 1994. DOI: 10.1049/ip–cta:19941091.CrossRefzbMATHGoogle Scholar
  6. [6]
    P. Grosdidier, M. Morari. Interaction measures for systems under decentralized control. Automatica, vol. 22, no. 3, pp. 309–319, 1986. DOI: 10.1016/0005–1098(86) 90029–4.CrossRefGoogle Scholar
  7. [7]
    Z. J. Palmor, Y. Halevi, N. Krasney. Automatic tuning of decentralized PID controllers for TITO processes. Automatica, vol. 31, no. 7, pp. 1001–1010, 1995. DOI: 10.1016/0005–1098(94)00177–K.CrossRefzbMATHGoogle Scholar
  8. [8]
    B. T. Jevtovic, M. R. Matausek. P ID controller design of TITO system based on ideal decoupler. Journal of Process Control, vol. 20, no. 7, pp. 869–876, 2010. DOI: 10.1016/j. jprocont.2010.05.006.CrossRefGoogle Scholar
  9. [9]
    Q. G. Wang, B. Huang, X. Guo. Auto–tuning of TITO decoupling controllers from step tests. ISA Transactions, vol. 39, no. 4, pp. 4 0–1 8, 2000. DOI: 10.1016/S0019–0578(00)00028–8.Google Scholar
  10. [10]
    S. Tavakoli, I. Griffin, P. J. Fleming. Tuning of decentralised PI (PID) controllers for TITO processes. Control Engineering Practice, vol. 14, no. 9, pp. 1069–1080, 2006. DOI: 10.1016/j.conengprac.2005.06.006.CrossRefGoogle Scholar
  11. [11]
    D. K. Maghade, B. M. Patre. Decentralized P I /P I D controllers based on gain and phase margin specifications for TITO processes. ISA Transactions, vol. 51, no. 4, pp. 550–558, 2012. DOI: 10.1016/j.conengprac.2005.06. 006.CrossRefGoogle Scholar
  12. [12]
    C. Rajapandiyan, M. Chidambaram. Controller design for MIMO processes based on simple decoupled equivalent transfer functions and simplified decoupler. Industrial & Engineering Chemistry Research, vol. 51, no. 38, pp. 12398–12410, 2012. DOI: 10.1021/ie301448c.CrossRefGoogle Scholar
  13. [13]
    K. Owa, S. Sharma, R. Sutton. A wavelet neural network based non–linear model predictive controller for a multivariable coupled tank system. International Journal of Automation and Computing, vol. 12, no. 2, pp. 156–170, 2015. DOI: 10.1007/s11633–014–0825–2.CrossRefGoogle Scholar
  14. [14]
    Z. Gao, L. R. Zhai, Y. D. Liu. Robust stabilizing regions of fractional–order PI controllers for fractional–order systems with time–delays. International Journal of Automation and Computing, vol. 14, no. 3, pp. 340–349, 2017. DOI: 10.1007/s11633–015–0941–7.CrossRefGoogle Scholar
  15. [15]
    V. Kumar, K. P. S. Rana, J. Kumar, P. Mishra, S. S. Nair. A robust fractional order fuzzy P + fuzzy I + fuzzy D controller for nonlinear and uncertain system. International Journal of Automation and Computing, vol. 14, no. 4, pp. 474–488, 2017. DOI: 10.1007/s11633–016–0981–7.CrossRefGoogle Scholar
  16. [16]
    S. Nema, P. K. Padhy. Identification of two–input twooutput process using state–space analysis. IET Control Theory & Applications, vol. 9, no. 13, pp. 2029–2038, 2015. DOI: 10.1049/iet–cta.2014.1079.MathSciNetCrossRefGoogle Scholar
  17. [17]
    P. K. Padhy, S. Majhi. Identification of TITO processes. In Proceedings of IEE International Conference on Industrial Technology, Mumbai, India, pp. 664–669, 2006. DOI: 10.1109/ICIT.2006.372248.Google Scholar
  18. [18]
    S. Majhi. SISO controller for TITO systems. In Proceedings of International Conference on Energy, Automation and Information Technology, IIT Kharagpur, India, 2001.Google Scholar
  19. [19]
    D. Y. Xue, Y. Q. Chen. Sub–optimum H2 rational approximations to fractional order linear systems. In Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, USA, pp. 1527–1536, 2005. DOI: 10.1115/DETC2005–84743.Google Scholar
  20. [20]
    V. D. Hajare, B. M. Patre. Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application. ISA Transactions, vol. 59, pp. 385–397, 2015. DOI: 10.1016/j.isatra.2015. 10.008.CrossRefGoogle Scholar
  21. [21]
    P. K. Padhy, S. Majhi, D. P. Atherton. PID–P controller for TITO systems. IFAC Proceedings Volumes, vol. 38, no. 1, pp. 54–59, 2005. DOI: 10.3182/20050703–6–CZ–1902. 00409.CrossRefGoogle Scholar
  22. [22]
    M. Zhuang, D. P. Atherton. PID controller design for a TITO system. IEE Proceedings–Control Theory and Applications, vol. 141, no. 2, pp. 111–120, 1994. DOI: 10.1049/ip–cta:19949977.CrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations