Advertisement

Fuzzy Behavior-based Control of Three Wheeled Omnidirectional Mobile Robot

  • Nacer HaceneEmail author
  • Boubekeur Mendil
Research Article

Abstract

In this paper, a fuzzy behavior-based approach for a three wheeled omnidirectional mobile robot (TWOMR) navigation has been proposed. The robot has to track either static or dynamic target while avoiding either static or dynamic obstacles along its path. A simple controller design is adopted, and to do so, two fuzzy behaviors “Track the Target” and “Avoid Obstacles and Wall Following” are considered based on reduced rule bases (six and five rules respectively). This strategy employs a system of five ultrasonic sensors which provide the necessary information about obstacles in the environment. Simulation platform was designed to demonstrate the effectiveness of the proposed approach.

Keywords

Three wheeled omnidirectional mobile robot (TWOMR) autonomous navigation obstacle avoidance fuzzy behavior-based control dynamic target dynamic environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. C. Huang, T. F. Wu, C. H. Yu, H. S. Hsu. Intelligent fuzzy motion control of three–wheeled omnidirectional mobile robots for trajectory tracking and stabilization. In Proceedings of International Conference on Fuzzy Theory and itt s Application, Taiwan, China, pp. 421–426, 2012.Google Scholar
  2. [2]
    T. Kalmár–Nagy, R. D'Andrea, P. Ganguly. Near–optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robotics and Autonomous Systems, vol.46, no. 1, pp. 47–64, 2004. D O I: 10.1016/j.robot.2003. 10.003.Google Scholar
  3. [3]
    C. Ren, S. G. Ma. Generalized proportional integral ob–server based control of an omnidirectional mobile robot. Mechatronics, vol. 26, pp. 36–44, 2015. DOI: 10.1016/j. mechatronics.2015.01.001.CrossRefGoogle Scholar
  4. [4]
    Y. N. Zhang, T. Huang. Research on a tracked omnidirectional and cross–country vehicle. Mechanism and Machine Theory, vol. 87, pp. 18–44, 2015. DOI: 10.1016/j.mechmachtheory. 2014.12.016.CrossRefGoogle Scholar
  5. [5]
    C. Ren, S. Ma, Y. Sun, C. Ye. A continuous dynamic modeling approach for an omnidirectional mobile robot. Ad–vanced Robotics, vol. 19, no. 4, pp. 253–271, 2015. DOI: 10.1080/01691864.2014.978372.CrossRefGoogle Scholar
  6. [6]
    H. Kim, B. K. Kim. Minimum–energy translational trajectory planning for battery–powered three–wheeled Omni–directional mobile robots. In Proceedings of the 10th Interna–tional Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, pp. 1730–1735, 2008.Google Scholar
  7. [7]
    M. Takahashi, T. Suzuki, F. Cinquegrani, R. Sorbello, E. Pagello. A mobile robot for transport applications in hos–pital domain with safe human detection algorithm. In Proceedings of IEEE International Conference on Robotics and Biomimetics, Guilin, China, pp. 1543–1548, 2009.Google Scholar
  8. [8]
    D. F. Luo, T. Schauer, M. Roth, J. Raisch. Position and orientation control of an omni–directional mobile rehabilit–ation robot. In Proceedings of IEEE International Conference on Control Applications, Dubrovnik, Croatia, pp.50–56, 2012.Google Scholar
  9. [9]
    F. Künemund, C. Kirsch, D. Heb, C. Röhrig. Fast and accurate trajectory generation for non–circular omnidirectional robots in industrial applications. In Proceedings of the 7th German Conference on Robotics, Munich, Germany, pp. 377–382, 2012.Google Scholar
  10. [10]
    E. J. Jung, B. J. Yi. Study on intelligent human tracking algorithms with application to omni–directional service robots. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence, Jeju, Korea, pp. 80–81, 2013.Google Scholar
  11. [11]
    Y. Inoue, T. Hirama, M. Wada. Design of omnidirectional mobile robots with A C R O B A T wheel mechanisms. In Proceedings of IEEE/RSJ International Conference on Intelli–gent Robots and Systems, Tokyo, Japan, pp. 4852–4859, 2013.Google Scholar
  12. [12]
    S. G. Ma, C. Ren, C. L. Ye. An omnidirectional mobile robot: Concept and analysis. In Proceedings of IEEE Inter–[national Conference on Robotics and Biomimetics, Guangzhou, China, pp. 920–925, 2012.Google Scholar
  13. [13]
    C. L. Ye, S. G. Ma. Development of an omnidirectional mobile platform. In Proceedings of IEEE International Conference on Mechatronics and Automation, Changchun, China, pp. 1111–1115, 2009.Google Scholar
  14. [14]
    B. A. Gebre, Z. Ryter, S. R. Humphreys, S. M. Ginsberg, S. P. Farrell, A. Kauffman, W. Capon, W. Robbins, K. Pochiraju. A multi–ball drive for omni–directional mobility: Prototyping a concept for a practical and agile omnidirectional mobility platform with the aid of 3D printing Technology. In IEEE International Conference on Technologies for Practical Robot Applications, Woburn, USA, 2014.Google Scholar
  15. [15]
    Y. N. Zhang, T. Huang. Research on a tracked omnidirectional and cross–country vehicle. Mechanism and Machine Theory, vol. 87, pp. 18–44, 2015. DOI: 10.1016/j.mechmachtheory. 2014.12.016.CrossRefGoogle Scholar
  16. [16]
    M. Tavakoli, C. Viegas, L. Marques, J. N. Pires, A. T. de Almeida. OmniClimbers: Omni–directional magnetic Springer wheeled climbing robots for inspection of ferromagnetic structures. Robotics and Autonomous Systems, vol. 61, no. 9, pp. 997–1007, 2013. DOI: 10.1016/j.robot.2013.05. 005.CrossRefGoogle Scholar
  17. [17]
    M. Tavakoli, C. Viegas. Analysis and application of dualrow omnidirectional wheels for climbing robots. Mechatronics, vol. 24, no. 5, pp. 436–148, 2014. DOI: 10.1016/j. mechatronics.2014.04.003.Google Scholar
  18. [18]
    K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, T. Fukuda. Feedback control of an omnidirectional autonomous platform for mobile service robots. Journal of Intelligent and Robotic Systems, vol. 22, no. 3–4, pp. 315–330, 1998.CrossRefGoogle Scholar
  19. [19]
    C. Ren, S. G. Ma. Dynamic modeling and analysis of an omnidirectional mobile robot. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 4860–4865, 2013.Google Scholar
  20. [20]
    H. Kim, B. K. Kim. Online minimum–energy trajectory planning and control on a straight–line path for threewheeled omnidirectional mobile robots. IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4771–4779, 2014. DOI: 10.1109/TIE.2013.2293706.CrossRefGoogle Scholar
  21. [21]
    J. C. L. Barreto S., A. G. S. Conceiçao, C. E. T. Dorea, L. Martinez, E. R. de Pieri. Design and implementation of model–predictive control with friction compensation on an omnidirectional mobile robot. IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 46–76, 2014. DOI: 10.1109/TMECH.2013.2243161.Google Scholar
  22. [22]
    M. A. Sharbafi, C. Lucas, R. Daneshvar. Motion control of omni–directional three–wheel robots by brain–emotionallearning–based intelligent controller. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications And Reviews), vol. 40, no. 6, pp. 630–638, 2010. DOI: 10.1109/TSMCC.2010.2049104.CrossRefGoogle Scholar
  23. [23]
    H. Sira–Ramirez, C. Lopez–Uribe, M. Velasco–Villa. Realtime linear control of the omnidirectional mobile robot. In Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, USA, pp. 4263–4268, 2010.Google Scholar
  24. [24]
    H. Seraji, A. Howard. Behavior–based robot navigation on challenging terrain: A fuzzy logic approach. IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 308–321, 2002. DOI: 10.1109/TRA.2002.1019461.CrossRefGoogle Scholar
  25. [25]
    C. C. Shing, P. L. Hsu, S. S. Yeh. T–S fuzzy path controller design for the omnidirectional mobile robot. In Proceedings of IECON the 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, pp. 4142–4147, 2006.Google Scholar
  26. [26]
    Y. H. Wu, Z. F. Yuan. Motion compensation of omnidirectional wheel robot using neural networks. In Proceedings of 6th International Conference on Intelligent Systems Design and Applications, Ji'nan, China, pp. 147–151, 2006.CrossRefGoogle Scholar
  27. [27]
    Y. Jiang, S. Y. Wang, B. D. Bai. A neural–network–based robust control strategy applying to omnidirectional lower limbs rehabilitation robot during centre–of–gravity shift. In Proceedings of IEEE International Conference on Mechatronics and Automation, Changchun, China, pp. 4907–4912, 2009.Google Scholar
  28. [28]
    H. C. Huang, C. C. Tsai, S. C. Lin. SoPC–based parallel elite genetic algorithm for global path planning of an autonomous omnidirectional mobile robot. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, USA, pp. 1959–1964, 2009.Google Scholar
  29. [29]
    D. Xu, D. B. Zhao, J. Q. Yi, X. M. Tan. Trajectory tracking control of omnidirectional wheeled mobile manipulat ors: Robust neural network–based sliding mode approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 3, pp. 788–799, 2009. DOI: 10.1109/TSMCB.2008.2009464.CrossRefGoogle Scholar
  30. [30]
    H. C. Huang, C. C. Tsai. Design of kinematic controller based on ant colony optimization computing method for omnidirectional mobile robots. In Proceedings of the 5th Conference on Industrial Electronics and Applications, Taiwan, China, pp. 1287–1292, 2010.Google Scholar
  31. [31]
    H. C. Huang, C. C. Tsai. Particle swarm optimization algorithm for optimal configurations of an omnidirectional mobile service robot. In Proceedings of Annual Conference, Taiwan, China, pp. 2872–2877, 2010.Google Scholar
  32. [32]
    C. C. Tsai, H. C. Huang, S. C. Lin. FPGA–based parallel DNA algorithm for optimal configurations of an omnidirectional mobile service robot performing fire extinguishment. IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 1016–1026, 2011. DOI: 10.1109/TIE.2010. 2048291.CrossRefGoogle Scholar
  33. [33]
    R. C. Arkin. Behavior–based Robotics, Cambridge, Massachusetts, USA: MIT Press, 1998.Google Scholar
  34. [34]
    R. A. Brooks. A Robust Layered Control System for a Mobile Robot, Technical Report A IM 864, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA, pp. 1–25, 1985.Google Scholar
  35. [35]
    R. C. Arkin. Motor schema–based mobile robot navigation. The International Journal of Robotics Research, vol. 8, no. 4, pp. 92–112, 1989. DOI: 10.1177/027836498900800406.CrossRefGoogle Scholar
  36. [36]
    K. Izumi, K. Watanabe. Fuzzy behavior–based tracking control for a mobile robot. In Proceedings of the 2nd Asian Control Conference, Seoul, Korea, vol. 1, pp. 685–688, 1997.Google Scholar
  37. [37]
    K. Watanabe, K. Izumi. Construction of fuzzy behaviorbased control systems for a mobile robot. In Proceedings of the Third International Symposium on Artificial Life and Robotics, Beppu, Japan, vol. 2, pp. 518–523, 1998.Google Scholar
  38. [38]
    K. Izumi, K. Watanabe. Fuzzy behavior–based tracking control for an omnidirectional mobile robot. In Proceedings of the Third International Symposium on Artificial Life and Robotics, Beppu, Japan, vol. 2, pp. 524–527, 1998.Google Scholar
  39. [39]
    M. F. Selekwa, D. D. Dunlap, D. Q. Shi, E. G. Jr. Collins. Robot navigation in very cluttered environments by preference–based fuzzy behaviors. Robotics and Autonomous Systems, vol. 56, no. 3, pp. 231–246, 2008. DOI: 10.1016/j. robot.2007.07.006.CrossRefGoogle Scholar
  40. [40]
    S. Zein–Sabatto, A. Sekmen, P. Koseeyaporn. Fuzzy behaviors for control of mobile robots. Systemics, Cybernetics and Informatics, vol. 1, no. 1, pp. 68–74, 2003.Google Scholar
  41. [41]
    M. Wang, J. N. K. Liu. Fuzzy logic–based real–time robot navigation in unknown environment with dead ends. Robotics and Autonomous Systems, vol. 56, no. 7, pp. 625–643, 2008. DOI: 10.1016/j.robot.2007.10.002.CrossRefGoogle Scholar
  42. [42]
    A. M. Rao, K. Ramji, B. S. K. Sundara Siva Rao, V. Vasu, C. Puneeth. Navigation of non–holonomic mobile robot using neuro–fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, 2017. DOI: 10.1007/s11633–016–1042–y.CrossRefGoogle Scholar
  43. [43]
    D. Nada, M. Bousbia–Salah, M. Bettayeb. Multi–sensor data fusion for wheelchair position estimation with unscented Kalman filter. International Journal of Automation and Computing, vol. 15, no. 2, pp. 207–217, 2017.CrossRefGoogle Scholar
  44. [44]
    S. Naaz, A. Alam, R. Biswas. Effect of different defuzzification methods in a fuzzy based load balancing application. IJCSI International Journal of Computer Science Issues, vol. 8, no. 5, pp. 261–267, 2011.Google Scholar
  45. [45]
    L. Banjanovic–Mehmedovic, D. Lukac, M. Suljic. Biologically based behavior as inspiration for mobile robots navigations. In Proceedings of IEEE EuroCon, Zagreb, Croatia, pp. 1980–1987, 2013.Google Scholar
  46. [46]
    L. Cherroun, M. Boumehraz. Fuzzy behavior based navigation approach for mobile robot in unknown environment. Journal of Electrical Engineering, vol. 13, no. 4, pp. 284–291, 2013.Google Scholar
  47. [47]
    H. W. Mo, Q. R. Tang, L. L. Meng. Behavior–based fuzzy control for mobile robot navigation. Mathematical Problems in Engineering, vol. 2013, Article number 561451, 2013.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Industrial technologies and information laboratory, Department of Electrical Engineering, Faculty of TechnologyUniversity of BejaiaBejaiaAlgeria

Personalised recommendations