Advertisement

Phenomenological Based Soft Sensor for Online Estimation of Slurry Rheological Properties

  • Jenny L. Diaz C.Email author
  • Diego A. Muñoz
  • Hernan Alvarez
Research Article

Abstract

This work proposes a soft sensor based on a phenomenological model for online estimation of the density and viscosity of a slurry flowing through a pipe-and-fittings assembly (PFA). The model is developed considering the conservation principle applied to mass and momentum transfer and considering frictional energy losses to include the variables directly affecting slurry properties. A reported proposal for state observers with unknown inputs is used to develop the first block of the observer structure. The second block is constructed with two options for evaluating slurry viscosity, generating two possible estimator structures, which are tested using real data. A comparison between them indicates different uses and capabilities according to available process information.

Keywords

Soft sensor phenomenological based semi-physical model non-Newtonian fluids unknown input observer slurry flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Colciencias and SUMICOL (Suministros de Colombia S.A.) for their support and financing for this project.

References

  1. [1]
    M. C. Bourne. Texture, viscosity, and food. Food Texture and Viscosity: Concept and Measurement, 2nd ed., M. C. Bourne, Ed., London, UK: Academic Press, pp. 1–32, 2002. DOI: 10.1016/B978-012119062-0/50001-2.Google Scholar
  2. [2]
    R. J. Oglesby, H. J. Moynihan, R. B. Santos, A. Ghosh, P. W. Hart. Does kraft hardwood and softwood pulp viscosity correlate to paper properties? Tappi Journal, vol. 15, no. 10, pp. 643–651, 2016.Google Scholar
  3. [3]
    S. Taborda, D. A. Muñoz, H. Alvarez. Snowball effect detection and control proposal for its correction. In Proceedings of IEEE Conference on Control Applications, IEEE, Buenos Aires, Argentina, pp. 1173–1178, 2016. DOI: 10.1109/CCA.2016.7587965.Google Scholar
  4. [4]
    W. Whiten, P. Steffens, J. Hitchins. An examination of pulp viscosity in tubes at higher shear rates. Minerals Engineering, vol. 6, no. 4, pp. 397–404, 1993. DOI: 10.1016/0892-6875(93)90018-I.CrossRefGoogle Scholar
  5. [5]
    F. N. Shi, T. J. Napier-Munn. Effects of slurry rheology on industrial grinding performance. International Journal of Mineral Processing, vol. 65, no. 3–4, pp. 125–140, 2002. DOI: 10.1016/S0301-7516(01)00060-6.CrossRefGoogle Scholar
  6. [6]
    M. C. Bourne. Viscosity measurement. Food Texture and Viscosity, 2nd ed., M. C. Bourne, Ed., London, UK: Academic Press, pp. 235–256, 2002. DOI: 10.1016/B978-012119062-0/50006-1.Google Scholar
  7. [7]
    Y. Fangary, A. S. A. Ghani, S. M. El Haggar, R. A. Williams. The effect of fine particles on slurry transport processes. Minerals Engineering, vol. 10, no. 4, pp. 427–439, 1997. DOI: 10.1016/S0892-6875(97)00019-8.CrossRefGoogle Scholar
  8. [8]
    M. Z. He, Y. M. Wang, E. Forssberg. Slurry rheology in wet ultrafine grinding of industrial minerals: A review. Powder Technology, vol. 147, no. 1–3, pp. 94–112, 2004. DOI: 10.1016/j.powtec.2004.09.032.CrossRefGoogle Scholar
  9. [9]
    M. J. Tippett, J. Bao. Distributed control of chemical process networks. International Journal of Automation and Computing, vol. 12, no. 4, pp. 368–381, 2015. DOI: 10. 1007/s11633-015-0895-9.CrossRefGoogle Scholar
  10. [10]
    R. P. Chhabra, J. F. Richardson. Rheometry for non-Newtonian fluids. Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed., R. P. Chhabra, J. F. Richardson, Eds., Oxford, UK: Butterworth-Heinemann, pp. 56–109, 2008. DOI: 10.1016/B978-0-7506-8532-0.00002-0.Google Scholar
  11. [11]
    D. Hodouin. Methods for automatic control, observation, and optimization in mineral processing plants. Journal of Process Control, vol. 21, no. 2, pp. 211–225, 2011. DOI: 10.1016/j.jprocont.2010.10.016.CrossRefGoogle Scholar
  12. [12]
    D. Sbárbaro, R. Del Villar. Advanced Control and Supervision of Mineral Processing Plants, London, UK: Springer, 2010. DOI: 10.1007/978-1-84996-106-6.CrossRefGoogle Scholar
  13. [13]
    K. M. Hangos, I. T. Cameron. Process Modelling and Model Analysis, San Diego, USA: Academic Press, 2001.Google Scholar
  14. [14]
    E. Hoyos, D. López, H. Alvarez. A phenomenologically based material flow model for friction stir welding. Materials & Design, vol. 111, pp. 321–330, 2016. DOI: 10.1016/j. matdes.2016.09.009.CrossRefGoogle Scholar
  15. [15]
    R. B. Bird. Transport Phenomena, Sterling Heights, USA: Wiley, 2007.Google Scholar
  16. [16]
    R. Darby. Chemical Engineering Fluid Mechanics, 2nd ed., New York, USA: Marcel Dekker, 2001.Google Scholar
  17. [17]
    I. Govender, G. B. Tupper, A. N. Mainza. Towards a mechanistic model for slurry transport in tumbling mills. Minerals Engineering, vol. 24, no. 3–4, pp. 230–235, 2011. DOI: 10.1016/j.mineng.2010.08.010.CrossRefGoogle Scholar
  18. [18]
    D. Muñoz, J. L. Diaz, S. Taborda, H. Alvarez. Hydrocyclone phenomenological-based model and feasible operation region. International Journal of Mining, Materials, and Mechanical Engineering, vol. 3, pp. 1–9, 2017.Google Scholar
  19. [19]
    K. J. Astrom, B. Wittenmark, Computer-controlled Systems: Theory and Design, 3rd ed., Berlin, Germany: Prentice Hall, 1997.Google Scholar
  20. [20]
    M. Darouach, M. Zasadzinski, S. J. Xu. Full-order observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, vol. 39, no. 3, pp. 606–609, 1994. DOI: 10.1109/9.280770.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Roco, C. A. Shook. Modeling of slurry flow: The effect of particle size. The Canadian Journal of Chemical Engineering, vol. 61, no. 4, pp. 494–503, 1983. DOI: 10.1002/cjce. 5450610402.CrossRefGoogle Scholar
  22. [22]
    C. F. Ihle, A. Tamburrino. Uncertainties in key transport variables in homogeneous slurry flows in pipelines. Minerals Engineering, vol. 32, pp. 54–59, 2012. DOI: 10.1016/j. mineng.2012.03.002.CrossRefGoogle Scholar
  23. [23]
    H. Alvarez, R. Lamanna, P. Vega, S. Revollar. Methodology for obtaining phenomenological based semiphysical models applied to a sugar cane juice tower. Iberoamericana Journal of Automation and Industrial Information, vol. 6, no. 3, pp. 117–122, 2009.Google Scholar
  24. [24]
    D. Castañeda, J. Lorena. The Use of Phenomenological Based Semi-physical Models as Virtual Sensors for Density and Viscosity of Mineral Slurries, Master dissertation, Facultad de Minas, Universidad Nacional de Colombia, Colombia, 2017.Google Scholar
  25. [25]
    W. B. Hooper. The two-K method predicts head losses in pipe fittings. Chemical Engineering, vol. 88, pp. 96–100, 1981.Google Scholar
  26. [26]
    B. J. Schorle, S. W. Churchill, M. Shacham. Comments on: “An explicit equation for friction factor in pipe”. Industry & Engineering Chemistry Fundamentals, vol. 19, no. 2, pp. 228, 1980. DOI: 10.1021/i160074a019.CrossRefGoogle Scholar
  27. [27]
    G. Besancon. Nonlinear Observers and Applications, Berlin, Heidelberg Germany: Springer, 2007. DOI: 10.1007/978-3-540-73503-8.zbMATHGoogle Scholar
  28. [28]
    J. Garcia-Tirado, H. Botero, F. Angulo. A new approach to state estimation for uncertain linear systems in a moving horizon estimation setting. International Journal of Automation and Computing, vol. 13, no. 6, pp. 653–664, 2016. DOI: 10.1007/s11633-016-1015-1.CrossRefGoogle Scholar
  29. [29]
    K. Hfaïedh, K. Dahech, T. Damak. A sliding mode observer for uncertain nonlinear systems based on multiple models approach. International Journal of Automation and Computing, vol. 14, no. 2, pp. 202–212, 2017. DOI: 10. 1007/s11633-016-0970-x.CrossRefGoogle Scholar
  30. [30]
    G. F. Aguilera. Mineral slurry viscosity simulation using neural networks, Master dissertation, Facultad de Minas, Universidad Nacional de Colombia, Colombia, 2005. [Online], Available: https://doi.org/intranet.minas.medellin.unal.edu.co/index.php?option=com_docman&taskdoc_download&gid986&Itemid285 Google Scholar
  31. [31]
    K. Madlener, B. Frey, H. K. Ciezki. Generalized Reynolds number for non-Newtonian fluids. Progress in Propulsion Physics, vol. 1, pp. 237–250, 2009. DOI: 10.1051/eucass/200901237.CrossRefGoogle Scholar
  32. [32]
    D. A. Muñoz, C. J. L. Diaz, H. Alvarez. Unknown input observer to estimate slurry rheological properties. In Proceedings of the 3rd Colombian Conference on Automatic Control, IEEE, Cartagena, Colombia, 2017. DOI: 10.1109/CCAC.2017.8276418.Google Scholar
  33. [33]
    J. L. Diaz C, C. Ocampo-Martinez, H. Alvarez. Nonlinear moving horizon estimator for online estimation of the density and viscosity of a mineral slurry. Industrial & Engineering Chemistry Research, vol. 56, no. 49, pp. 14592–14603, 2017. DOI: 10.1021/acs.iecr.7b04393.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group of Dynamic ProcessesUniversidad Nacional de Colombia-Sede MedellínMedellínColombia
  2. 2.Mathematical Optimization of Processes, Centro de Ciencia BásicaUniversidad Pontificia BolivarianaMedellínColombia

Personalised recommendations