Advertisement

Performance Evaluation and Improvement of Chipset Assembly & Test Production Line Based on Variability

  • Chang-Jun Li
  • Zong-Shi Xie
  • Xin-Ran Peng
  • Bo LiEmail author
Research Article

Abstract

“Factory physics principles” provided a method to evaluate the performance of a simple production line, whose fundamental parameters are known or given. However, it is difficult to obtain the exact and reasonable parameters in actual manufacturing environment, especially for the complex chipset assembly & test production line (CATPL). Besides, research in this field tends to focus on evaluation and improvement of CATPL without considering performance interval and status with variability level. A developed internal benchmark method is proposed, which established three-parameter method based on the Little′s law. It integrates the variability factors, such as processing time, random failure time, and random repair time, to meet performance evaluation and improvement. A case study in a chipset assembly and test factory for the performance of CATPL is implemented. The results demonstrate the potential of the proposed method to meet performance evaluation and emphasise its relevance for practical applications.

Keywords

Performance evaluation and improvement chipset assembly & test production line (CATPL) parameters Little′s law variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to the anonymous reviewers for their constructive and helpful comments that have led to this much improved manuscript. This work was supported by National Natural Science Foundation of China (No. 71671026) and Sichuan Science and Technology Program (Nos. 2018GZ0306 and 2017GZ0034).

References

  1. [1]
    W. J. Hopp, M. L. Spearman. Factory Physics, 2nd ed., New York, USA: McGraw-Hill/Irwin, 2000.Google Scholar
  2. [2]
    M. Pınarbaşı, M. Yüzükrmız, B. Toklu. Variability modelling and balancing of stochastic assembly lines. International Journal of Production Research, vol. 54, no. 19, pp. 5761–5782, 2016. DOI: 10.1080/00207543.2016.1177236.CrossRefGoogle Scholar
  3. [3]
    K. Wu. An examination of variability and its basic properties for a factory. IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 1, pp. 214–221, 2005. DOI: 10.1109/TSM.2004.840525.MathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Akhavan-Tabatabaei, Y. Fathi, J. G. Shanthikumar. A markov chain framework for cycle time approximation of toolsets. IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 4, pp. 589–597, 2012. DOI: 10.1109/TSM. 2012.2202252.CrossRefGoogle Scholar
  5. [5]
    N. X. Kang, L. Zheng, J. S. Li. Analysis of multi-product manufacturing systems with arbitrary processing times. International Journal of Production Research, vol. 53, no. 3, pp. 983–1001, 2015. DOI: 10.1080/00207543.2014. 952363.CrossRefGoogle Scholar
  6. [6]
    F. Jarrahi, W. Abdul-Kader. Performance evaluation of a multi-product production line: An approximation method. Applied Mathematical Modelling, vol. 39, no. 13, pp. 3619–3636, 2015. DOI: 10.1016/j.apm.2014.11.059.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. S. Grema, Y. Cao. Optimal feedback control of oil reservoir waterflooding processes. International Journal of Automation and Computing, vol. 13, no. 1, pp. 73–80, 2016. DOI: 10.1007/s11633-015-0909-7.CrossRefGoogle Scholar
  8. [8]
    M. K. Loganathan, G. Kumar, O. P. Gandhi. Availability evaluation of manufacturing systems using Semi-Markov model. International Journal of Computer Integrated Manufacturing, vol. 29, no. 7, pp. 720–735, 2016. DOI: 10.1080/0951192X.2015.1068454.CrossRefGoogle Scholar
  9. [9]
    N. Li, M. T. Zhang, S. M. Deng, Z. H. Lee, L. Zhang, L. Zheng. Single-station performance evaluation and improvement in semiconductor manufacturing: A graphical approach. International Journal of Production Economics, vol. 107, no. 2, pp. 397–403, 2007. DOI: 10.1016/j.ijpe.2006. 08.011.CrossRefGoogle Scholar
  10. [10]
    M. Manitz. Queueing-model based analysis of assembly lines with finite buffers and general service times. Computers & Operations Research, vol. 35, no. 8, pp. 2520–2536, 2008. DOI: 10.1016/j.cor.2006.12.016.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. M. Smith. System capacity and performance modelling of finite buffer queueing networks. International Journal of Production Research, vol. 52, no. 11, pp. 3125–3163, 2013. DOI: 10.1080/00207543.2013.854935.CrossRefGoogle Scholar
  12. [12]
    J. A. Schwarz, M. Epp. Performance evaluation of a transportation-type bulk queue with generally distributed inter-arrival times. International Journal of Production Research, vol. 54, no. 20, pp. 6251–6264, 2015. DOI: 10.1080/00207543.2015.1092613.CrossRefGoogle Scholar
  13. [13]
    P. Jonsson, L. K. Ivert. Improving performance with sophisticated master production scheduling. International Journal of Production Economics, vol. 168, pp. 118–130, 2015. DOI: 10.1016/j.ijpe.2015.06.012.CrossRefGoogle Scholar
  14. [14]
    C. Dietl, U. K. Rakowsky. An operating strategy for high-availability multi-station transfer lines. International Journal of Automation and Computing, vol. 3, no. 2, pp. 125–130, 2006. DOI: 10.1007/s11633-006-0125-6.CrossRefGoogle Scholar
  15. [15]
    R. Bierbooms, I. J. B. F. Adan, M. van Vuuren. Approximate analysis of single-server tandem queues with finite buffers. Annals of Operations Research, vol. 209, no. 1, pp. 67–84, 2013. DOI: 10.1007/s10479-011-1021-1.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Damodaran, M. Hulett. Analytical approximations to predict performance measures of manufacturing systems with general distributions, job failures and parallel processing. European Journal of Operational Research, vol. 221, no. 1, pp. 74–86, 2012. DOI: 10.1016/j.ejor.2012. 03.013.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. Bierbooms, I. J. B. F. Adan, M. van Vuuren. Approximate performance analysis of production lines with continuous material flows and finite buffers. Stochastic Models, vol. 29, no. 1, pp. 1–30, 2013. DOI: 10.1080/15326349. 2012.726034.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. M. Smith. Properties and performance modelling of finite buffer M/G/1/K networks. Computers & Operations Research, vol. 38, no. 4, pp. 740–754, 2011. DOI: 10.1016/j.cor.2010.08.014.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    W. Abdul-Kader, A. Gharbi. Capacity estimation of a multi-product unreliable production line. International Journal of Production Research, vol. 40, no. 18, pp. 4815–4834, 2002. DOI: 10.1080/0020754021000024148.CrossRefzbMATHGoogle Scholar
  20. [20]
    C. Gelmereanu, L. Morar, S. Bogdan. Productivity and cycle time prediction using artificial neural network. Procedia Economics and Finance, vol. 15, pp. 1563–1569, 2014. DOI: 10.1016/S2212-5671(14)00626-1.CrossRefGoogle Scholar
  21. [21]
    C. P. L. Veeger, L. F. P. Etman, E. Lefeber, I. J. B. F. Adan, J. van Herk, J. E. Rooda. Predicting cycle time distributions for integrated processing workstations: An aggregate modeling approach. IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 2, pp. 223–236, 2011. DOI: 10.1109/TSM.2010.2094630.CrossRefGoogle Scholar
  22. [22]
    R. A. Khalil, D. J. Stockton. Predicting the effects of cycle time variability on the efficiency of electronics assembly mixed-model, zero-buffer flow processing lines. International Journal of Computer Integrated Manufacturing, vol. 23, no. 12, pp. 1149–1157, 2010. DOI: 10.1080/0951192X. 2010.500679.CrossRefGoogle Scholar
  23. [23]
    D. H. Moon, Y. W. Shin. Throughput of flow lines with unreliable parallel-machine workstations and blocking. Journal of Industrial and Management Optimization, vol. 13, no. 2, 2016. DOI: 10.3934/jimo.2016052.Google Scholar
  24. [24]
    S. Kłos, J. Patalas-Maliszewska. Throughput analysis of automatic production lines based on simulation methods. In Proceedings of the 16th International Conference on Intelligent Data Engineering and Automated Learning, Wroclaw, Poland, pp. 181–190, 2015. DOI: 10.1007/978-3-319-24834-9_22.Google Scholar
  25. [25]
    W. S. Yang, D. H. Moon. Approximation of throughput in tandem queues with multiple servers and blocking. Applied Mathematical Modelling, vol. 38, no. 24, pp. 6122–6132, 2014. DOI: 10.1016/j.apm.2014.05.015.MathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Dhouib, A. Gharbi, N. Landolsi. Throughput assessment of mixed-model flexible transfer lines with unreliable machines. International Journal of Production Economics, vol. 122, no. 2, pp. 619–627, 2009. DOI: 10.1016/j.ijpe.2009. 06.016.CrossRefGoogle Scholar
  27. [27]
    H. Lee, D. W. Seo. Performance evaluation of WIP-controlled line production systems with constant processing times. Computers & Industrial Engineering, vol. 94, pp. 138–146, 2016. DOI: 10.1016/j.cie.2016.02.006.Google Scholar
  28. [28]
    N. Li, L. Zheng, Q. L. Li. Performance analysis of two-loop closed production systems. Computers & Operations Research, vol. 36, no. 1, pp. 119–134, 2009. DOI: 10.1016/ j.cor.2007.07.008.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Aziz, F. Jarrahi, W. Abdul-Kader. Modeling and performance evaluation of a series-parallel flow line system with finite buffers. Information Systems and Operational Research, vol. 48, no. 2, pp. 103–120, 2010. DOI: 10.3138/ infor.48.2.103.MathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Wu, N. Zhao, L. Gao, C. K. M. Lee. Production control policy for tandem workstations with constant service times and queue time constraints. International Journal of Production Research, vol. 54, no. 21, pp. 6302–6316, 2016. DOI: 10.1080/00207543.2015.1129468.CrossRefGoogle Scholar
  31. [31]
    A. Aziz, F. Jarrahi, W. Abdul-Kader. Modeling and performance evaluation of a series-parallel flow line system with finite buffers. Information Systems and Operational Research, vol. 48, no. 2, pp. 103–120, 2010. DOI: 10.3138/ infor.48.2.103.MathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Shi, S. B. Gershwin. Improvement of the evaluation of closed-loop production systems with unreliable machines and finite buffers. Computers & Industrial Engineering, vol. 75, pp. 239–256, 2014. DOI: 10.1016/j.cie.2014.07.006.Google Scholar
  33. [33]
    R. A. Khalil, D. J. Stockton. Predicting the effects of cycle time variability on the efficiency of electronics assembly mixed-model, zero-buffer flow processing lines. International Journal of Computer Integrated Manufacturing, vol. 23, no. 12, pp. 1149–1157, 2010. DOI: 10.1080/0951192X. 2010.500679.CrossRefGoogle Scholar
  34. [34]
    K. Wu, Y. M. Zhou, N. Zhao. Variability and the fundamental properties of production lines. Computers & Industrial Engineering, vol. 99, pp. 364–371, 2016. DOI: 10. 1016/j.cie.2016.04.014.CrossRefGoogle Scholar
  35. [35]
    Y. Pang, H. Xia. A hybrid modeling and optimization approach for scheduling problems of assembly automation processes. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 230, no. 8, pp. 778–785, 2016. DOI: 10.1177/09596518 16654637.Google Scholar
  36. [36]
    C. Wang, P. X. Mao, Y. S. Mao, J. G. Shin. Research on scheduling and optimization under uncertain conditions in panel block production line in shipbuilding. International Journal of Naval Architecture and Ocean Engineering, vol. 8, no. 4, pp. 398–408, 2016. DOI: 10.1016/j.ijnaoe.2016. 03.009.CrossRefGoogle Scholar
  37. [37]
    Y. X. Sun, N. Q. Wu. Cycle time analysis for wafer revisiting process in scheduling of single-arm cluster tools. International Journal of Automation and Computing, vol. 8, no. 4, pp. 437–444, 2011. DOI: 10.1007/s11633-011-0601-5.CrossRefGoogle Scholar
  38. [38]
    M. Perona, N. Saccani, S. Bonetti, A. Bacchetti. Manufacturing lead time shortening and stabilisation by means of workload control: An action research and a new method. Production Planning & Control, vol. 27, no. 7–8, pp. 660–670, 2016. DOI: 10.1080/09537287.2016.1166283.Google Scholar
  39. [39]
    H. H. Bashford, K. D. Walsh, A. Sawhney. Production system loading-cycle time relationship in residential construction. Journal of Construction Engineering and Management, vol. 131, no. 1, pp. 15–22, 2005. DOI: 10.1061/(ASCE) 0733-9364(2005)131:1(15).CrossRefGoogle Scholar
  40. [40]
    C. J. Kuo, C. F. Chien, J. D. Chen. Manufacturing intelligence to exploit the value of production and tool data to reduce cycle time. IEEE Transactions on Automation Science and Engineering, vol. 8, no. 1, pp. 103–111, 2011. DOI: 10.1109/TASE.2010.2040999.CrossRefGoogle Scholar
  41. [41]
    B. Li, X. Xiong. Quantitative evaluation and simulation validation of production line′s performance based on Little′s Law. China Mechanical Engineering, vol. 22, no. 3, pp. 305–309, 2011.Google Scholar
  42. [42]
    A. Kalir, S. Bouhnik. Achieving reduced production cycle times via effective control of key factors of the P-K equation. In Proceedings of the 17th Annual SEMI/IEEE Advanced Semiconductor Manufacturing Conference, IEEE, Boston, USA, pp. 139–143, 2006. DOI: 10.1109/ASMC. 2006.1638738.Google Scholar
  43. [43]
    N. Li, L. Zhang, M. Zhang, L. Zheng. Applied factory physics study on semiconductor assembly and test manufacturing. In Proceedings of IEEE International Symposium on Semiconductor Manufacturing, IEEE, San Jose, USA, pp. 307–310, 2005. DOI: 10.1109/ISSM.2005. 1513364.Google Scholar
  44. [44]
    C. Jung, H. J. Kim, T. E. Lee. A branch and bound algorithm for cyclic scheduling of timed petri nets. IEEE Transactions on Automation Science and Engineering, vol. 12, no. 1, pp. 309–323, 2015. DOI: 10.1109/TASE.2013. 2285221.CrossRefGoogle Scholar
  45. [45]
    Q. Y. Dong, S. K. Chen, J. S. Lu. Modeling and optimization of multi-model multiple assembly line mixed-line assembling by turns. Journal of Coastal Research, no. 73, pp. 763–770, 2015. DOI: 10.2112/SI73-131.1.CrossRefGoogle Scholar
  46. [46]
    B. Li, J. P. Li, W. R. Li, S. A. Shirodkar. Demand forecasting for production planning decision-making based on the new optimised fuzzy short time-series clustering. Production Planning & Control, vol. 23, no. 9, pp. 663–673, 2012. DOI: 10.1080/09537287.2011.584578.CrossRefGoogle Scholar
  47. [47]
    I. Tirkel. Cycle time prediction in wafer fabrication line by applying data mining methods. In Proceedings of the 22nd Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, IEEE, Saratoga Springs, USA, pp. 1–5, 2011. DOI: 10.1109/ASMC.2011.5898218.Google Scholar
  48. [48]
    C. J. Li, H. Wang, B. Li. Performance prediction of a production line with variability based on grey model artificial neural network. In Proceedings of the 35th Chinese Control Conference, IEEE, Chengdu, China, pp. 9582–9587, 2016. DOI: 10.1109/ChiCC.2016.7554879.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations