A Survey of Scene Understanding by Event Reasoning in Autonomous Driving
Abstract
Realizing autonomy is a hot research topic for automatic vehicles in recent years. For a long time, most of the efforts to this goal concentrate on understanding the scenes surrounding the ego-vehicle (autonomous vehicle itself). By completing low-level vision tasks, such as detection, tracking and segmentation of the surrounding traffic participants, e.g., pedestrian, cyclists and vehicles, the scenes can be interpreted. However, for an autonomous vehicle, low-level vision tasks are largely insufficient to give help to comprehensive scene understanding. What are and how about the past, the on-going and the future of the scene participants? This deep question actually steers the vehicles towards truly full automation, just like human beings. Based on this thoughtfulness, this paper attempts to investigate the interpretation of traffic scene in autonomous driving from an event reasoning view. To reach this goal, we study the most relevant literatures and the state-of-the-arts on scene representation, event detection and intention prediction in autonomous driving. In addition, we also discuss the open challenges and problems in this field and endeavor to provide possible solutions.
Keywords
Autonomous vehicle scene understanding event reasoning intention prediction scene representationPreview
Unable to display preview. Download preview PDF.
References
- [1]M. M. Waldrop. Autonomous vehicles: No drivers required. Nature, vol.518, no.7537, pp.20–23, 2015. DOI: 10.1038/518020a.CrossRefGoogle Scholar
- [2]J. Mervis. Are We Going Too Fast on Driverless Cars? http://www.sciencemag.org/news/2017/12/are-wegoing-too-fast-driverless-cars, December 14, 2017.Google Scholar
- [3]Y. Y. Zheng, J. Yao. Multi-angle face detection based on DP-adaboost. International Journal of Automation and Computing, vol.12, no.4, pp.421–431, 2015. DOI: 10.1007/s11633-014-0872-8.CrossRefGoogle Scholar
- [4]H. G. Ren, W. M. Liu, T. Shi, F. J. Li. Compressive tracking based on online Hough forest. International Journal of Automation and Computing, vol. 14, no.4, pp.396–406, 2017. DOI: 10.1007/s11633-017-1083-x.CrossRefGoogle Scholar
- [5]J. W. Fang, H. K. Xu, Q. Wang, T. J. Wu. Online hash tracking with spatio-temporal saliency auxiliary. Computer Vision and Image Understanding, vol. 160, pp. 57–72, 2017. DOI: 10.1016/j.cviu.2017.03.006.CrossRefGoogle Scholar
- [6]S. Arumugadevi, V. Seenivasagam. Color image segmentation using feedforward neural networks with FCM. International Journal ofAutomation and Computing, vol. 13, no. 5, pp. 491–500, 2016. DOI: 10.1007/s11633-016-0975-5.CrossRefGoogle Scholar
- [7]J. F. Bonnefon, A. Shariff, I. Rahwan. The social dilemma of autonomous vehicles. Science, vol. 352, no. 6293, pp. 1573–1576, 2016. DOI: 10.1126/science.aaf2654.CrossRefGoogle Scholar
- [8]J. Janai, F. Guney, A. Behl, A. Geiger. Computer vision for autonomous vehicles: Problems, datasets and state-ofthe-art. arXiv:1704.05519, 2017.Google Scholar
- [9]J. R. Xue, D. Wang, S. Y. Du, D. X. Cui, Y. Huang, N. N. Zheng. A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars. Frontiers of Information Technology & Electronic Engineering, vol. 18, no. 1, pp. 122–138, 2017. DOI: 10.1631/FITEE. 1601873.CrossRefGoogle Scholar
- [10]H. Zhu, K. V. Yuen, L. Mihaylova, H. Leung. Overview of environment perception for intelligent vehicles. IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584–2601, 2017. DOI: 10.1109/TITS.2017.2658662.CrossRefGoogle Scholar
- [11]D. L. Waltz. Understanding scene descriptions as event simulations. In Proceedings of the 18th Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, Philadelphia, USA, pp.7–11, 1980. DOI: 10.3115/981436.981439.CrossRefGoogle Scholar
- [12]Y. Q. Hou, S. Hornauer, K. Zipser. Fast recurrent fully convolutional networks for direct perception in autonomous driving. arXiv:1711.06459, 2017.Google Scholar
- [13]H. Z. Xu, Y. Gao, F. Yu, T. Darrell. End-to-end learning of driving models from large-scale video datasets. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Honolulu, USA, pp.3530–3538, 2017. DOI: 10.1109/CVPR.2017.376.Google Scholar
- [14]T. Fernando, S. Denman, S. Sridharan, C. Fookes. Going deeper: Autonomous steering with neural memory networks. In Proceedings of IEEE International Conference on Computer Vision Workshop, IEEE, Venice, Italy, pp.214–221, 2017. DOI: 10.1109/ICCVW.2017.34.Google Scholar
- [15]C. Thorpe, M. H. Hebert, T. Kanade, S. A. Shafer. Vision and navigation for the Carnegie-Mellon Navlab. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 3, pp. 362–372, 1988. DOI: 10.1109/34.3900.CrossRefGoogle Scholar
- [16]M. Buehler, K. Iagnemma, S. Singh. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Berlin, Heidelberg, Germany: Springer, 2009. DOI: 10.1007/9783-642-03991-1.CrossRefGoogle Scholar
- [17]J. Hooper. From DARPA Grand Challenge 2004DARPA’ s Debacle in The Desert. https://www.popsci.com/scitech/article/2004-06/darpagrand-challenge-2004darpas-debacle-desert, June 4, 2004.Google Scholar
- [18]S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L. E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. Van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehle, A. Nefian, P. Mahoney. Stanley: The robot that won the DARPA grand challenge. The 2005 DARPA Grand Challenge, M. Buehler, K. Iagnemma, S. Singh, Eds., Berlin, Heidelberg, Germany: Springer, 2007. DOI: 10.1007/978-3-540-73429-1_1.Google Scholar
- [19]A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, USA, pp. 33543361, 2012. DOI: 10.1109/CVPR.2012.6248074.Google Scholar
- [20]G. J. Brostow, J. Fauqueur, R. Cipolla. Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, vol.30, no.2, pp.88, 2009. DOI: 10.1016/j.patrec.2008.04.005.CrossRefGoogle Scholar
- [21]M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 3213–3223, 2016. DOI: 10.1109/CVPR.2016.350.Google Scholar
- [22]A. Gaidon, Q. Wang, Y. Cabon, E. Vig. Virtual worlds as proxy for multi-object tracking analysis. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349, 2016. DOI: 10.1109/CVPR.2016.470.Google Scholar
- [23]W. Maddern, G. Pascoe, C. Linegar, P. Newman. 1 year, 1000 km: The Oxford RobotCar dataset. International Journal of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017. DOI: 10.1177/0278364916679498.CrossRefGoogle Scholar
- [24]J. V. Dueholm, M. S. Kristoffersen, R. K. Satzoda, E. Ohn-Bar, T. B. Moeslund, M. M. Trivedi. Multiperspective vehicle detection and tracking: Challenges, dataset, and metrics. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, pp.959–964, 2016. DOI: 10.1109/ITSC.2016.7795671.Google Scholar
- [25]C. Wang, Y. K. Fang, H. J. Zhao, C. Z. Guo, S. Mita, H. B. Zha. Probabilistic inference for occluded and Multiview on-road vehicle detection. IEEE Transactions on Intelligent Transportation Systems, vol.17, no.1, pp.215–229, 2015. DOI: 10.1109/TITS.2015.2466109.CrossRefGoogle Scholar
- [26]D. Hoiem, S. K. Divvala, J. H. Hays. Pascal VOC 2008 challenge. World Literature Today, 2009.Google Scholar
- [27]O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, F. F. Li. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. DOI: 10.1007/s11263-015-0816-y.MathSciNetCrossRefGoogle Scholar
- [28]A. Milan, L. Leal-Taixe, I. Reid, S. Roth, K. Schindler. MOT16: A benchmark for multi-object tracking. arXiv:1603.00831, 2016.Google Scholar
- [29]F. C. Heilbron, V. Escorcia, B. Ghanem, J. C. Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 961–970, 2015. DOI: 10.1109/CVPR.2015.7298698.Google Scholar
- [30]T. Deng, K. F. Yang, Y. J. Li, H. M. Yan. Where does the driver look? Top-down-based saliency detection in a traffic driving environment. IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 7, pp. 2051–2062, 2016. DOI: 10.1109/TITS.2016.2535402.CrossRefGoogle Scholar
- [31]A. Geiger, M. Lauer, R. Urtasun. A generative model for 3D urban scene understanding from movable platforms. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Colorado Springs, USA, pp. 19451952, 2011. DOI: 10.1109/CVPR.2011.5995641.Google Scholar
- [32]J. M. Zhang, S. Sclaroff. Exploiting surroundedness for saliency detection: A Boolean map approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, no.5, pp.889, 2016. DOI: 10.1109/TPAMI.2015.2473844.CrossRefGoogle Scholar
- [33]L. Zhou, Y. F. Ju, J. W. Fang, J. R. Xue. Saliency detection via background invariance in scale space. Journal of Electronic Imaging, vol.26, no.4, Article number 043021, 2017. DOI: 10.1117/1.JEI.26.4.043021.Google Scholar
- [34]Q. Wang, Y. Yuan, P. K. Yan, X. L. Li. Saliency detection by multiple-instance learning. IEEE Transactions on Cybernetics, vol.43, no.2, pp.660–672, 2013. DOI: 10.1109/TSMCB.2012.2214210.CrossRefGoogle Scholar
- [35]S. F. He, R. W. H. Lau. Exemplar-driven top-down saliency detection via deep association. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 5723–5732, 2016. DOI: 10.1109/CVPR.2016.617.Google Scholar
- [36]J. M. Yang, M. H. Yang. Top-down visual saliency via joint CRF and dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 3, pp. 576–588, 2017. DOI: 10.1109/TPAMI.2016.2547384.CrossRefGoogle Scholar
- [37]J. T. Pan, E. Sayrol, X. Giro-I-Nieto, K. McGuinness, N. E. O’Connor. Shallow and deep convolutional networks for saliency prediction. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, NV, USA, pp.598–606, 2016. DOI: 10.1109/CVPR.2016.71.Google Scholar
- [38]Y. Xia, D. Q. Zhang, A. Pozdnoukhov, K. Nakayama, K. Zipser, D. Whitney. Training a network to attend like human drivers saves it from common but misleading loss functions. arXiv:1711.06406, 2017.Google Scholar
- [39]Y. Xie, L. F. Liu, C. H. Li, Y. Y. Qu. Unifying visual saliency with hog feature learning for traffic sign detection. In Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, Xi’an, China, pp. 24–29, 2009. DOI: 10.1109/IVS.2009.5164247.Google Scholar
- [40]W. J. Won, M. Lee, J. W. Son. Implementation of road traffic signs detection based on saliency map model. In Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, Eindhoven, Netherlands, pp. 542–547, 2008. DOI: 10.1109/IVS.2008.4621144.Google Scholar
- [41]D. D. Wang, X. W. Hou, J. W. Xu, S. G. Yue, C. L. Liu. Traffic sign detection using a cascade method with fast feature extraction and saliency test. IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 12, pp. 32903302, 2017. DOI: 10.1109/TITS.2017.2682181.Google Scholar
- [42]J. Kim, S. Kim, R. Mallipeddi, G. Jang, M. Lee. Adaptive driver assistance system based on traffic information saliency map. In Proceedings of International Joint Conference on Neural Networks, IEEE, Vancouver, Canada, pp. 1918–1923, 2016. DOI: 10.1109/IJCNN.2016.7727434.Google Scholar
- [43]V. John, K. Yoneda, Z. Liu, S. Mita. Saliency map generation by the convolutional neural network for real-time traffic light detection using template matching. IEEE Transactions on Computational Imaging, vol. 1, no. 3, pp. 159–173, 2015. DOI: 10.1109/TCI.2015.2480006.MathSciNetCrossRefGoogle Scholar
- [44]H. L. Kuang, K. F. Yang, L. Chen, Y. J. Li, L. L. H. Chan, H. Yan. Bayes saliency-based object proposal generator for nighttime traffic images. IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 814–825, 2017. DOI: 10.1109/TITS.2017.2702665.CrossRefGoogle Scholar
- [45]R. Timofte, K. Zimmermann, L. V. Gool. Multi-view traffic sign detection, recognition, and 3D localisation. Machine Vision and Applications, vol.25, no.3, pp.633–647, 2014. DOI: 10.1007/s00138-011-0391-3.CrossRefGoogle Scholar
- [46]S. Alletto, A. Palazzi, F. Solera, S. Calderara, R. Cucchiara. DR(eye)VE: A dataset for attention-based tasks with applications to autonomous and assisted driving. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE, LasVegas, USA, 2016. DOI: 10.1109/CVPRW.2016.14.Google Scholar
- [47]A. Palazzi, F. Solera, S. Calderara, S. Alletto, R. Cucchiara. Where should you attend while driving? arXiv:1611.08215, 2016.Google Scholar
- [48]C. Landsiedel, D. Wollherr. Road geometry estimation for urban semantic maps using open data. Advanced Robotics, vol.31, no.5, pp.282–290, 2017. DOI: 10.1080/01691864.2016.1250675.CrossRefGoogle Scholar
- [49]E. Levinkov, M. Fritz. Sequential Bayesian model update under structured scene prior for semantic road scenes labeling. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Sydney, Australia, pp. 1321–1328, 2013. DOI: 10.1109/ICCV.2013.167.Google Scholar
- [50]Z. Y. Zhang, S. Fidler, R. Urtasun. Instance-level segmentation for autonomous driving with deep densely connected MRFs. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 669–677, 2016. DOI: 10.1109/CVPR.2016.79.Google Scholar
- [51]T. Cavallari, Semantic Slam: A New Paradigm for Object Recognition and Scene Reconstruction, Ph. D. dissertation, University of Bologna, Italy, 2017.Google Scholar
- [52]S. C. Zhou, R. Yan, J. X. Li, Y. K. Chen, H. J. Tang. A brain-inspired SLAM system based on ORB features. International Journal of Automation and Computing, vol. 14, no.5, pp. 564–575, 2017. DOI: 10.1007/s11633-017-1090-y.CrossRefGoogle Scholar
- [53]B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning-based fine-grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 119–135, 2017. DOI: 10.1007/s11633-017-1053-3.CrossRefGoogle Scholar
- [54]H. Kong, J. Y. Audibert, J. Ponce. Vanishing point detection for road detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 96–103, 2009. DOI: 10.1109/CVPR.2009.5206787.Google Scholar
- [55]H. Kong, S. E. Sarma, F. Tang. Generalizing Laplacian of Gaussian filters for vanishing-point detection. IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 408–418, 2013. DOI: 10.1109/TITS.2012.2216878.CrossRefGoogle Scholar
- [56]J. J. Shi, J. X. Wang, F. F. Fu. Fast and robust vanishing point detection for unstructured road following. IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 970–979, 2016. DOI: 10.1109/TITS.2015.2490556.CrossRefGoogle Scholar
- [57]J. M. Alvarez, T. Gevers, A. M. Lopez. 3D scene priors for road detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, USA, pp.57–64, 2010. DOI: 10.1109/CVPR.2010.5540228.Google Scholar
- [58]E. Casapietra, T. H. Weisswange, C. Goerick, F. Kummert. Enriching a spatial road representation with lanes and driving directions. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, pp. 1579–1585, 2016. DOI: 10.1109/ITSC.2016.7795768.Google Scholar
- [59]A. Seff, J. X. Xiao. Learning from maps: Visual common sense for autonomous driving. arXiv:1611.08583, 2016.Google Scholar
- [60]M. Y. Liu, S. X. Lin, S. Ramalingam, O. Tuzel. Layered interpretation of street view images. arXiv:1506.04723, 2015.CrossRefGoogle Scholar
- [61]A. Geiger, M. Lauer, C. Wojek, C. Stiller, R. Urtasun. 3D traffic scene understanding from movable platforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 1012–1025, 2014. DOI: 10.1109/TPAMI.2013.185.CrossRefGoogle Scholar
- [62]A. Ess, T. Mueller, H. Grabner, L. Van Gool. Segmentationbased urban traffic scene understanding. In Proceedings of British Machine Vision Conference, London, UK, 2009. DOI: 10.5244/C.23.84.Google Scholar
- [63]B. Kitt, A. Geiger, H. Lategahn. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, San Diego, USA, pp. 486–492, 2010. DOI: 10.1109/IVS.2010.5548123.Google Scholar
- [64]S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), Cambridge, Mass, UK: MIT, 2005.zbMATHGoogle Scholar
- [65]H. Y. Zhang, A. Geiger, R. Urtasun. Understanding high-level semantics by modeling traffic patterns. In Proceedings of IEEE Conference on Computer Vision, IEEE, Sydney, Australia, pp. 3056–3063, 2013. DOI: 10.1109/ICCV.2013.379.Google Scholar
- [66]C. Y. Chen, A. Seff, A. Kornhauser, J. X. Xiao. Deep-Driving: Learning affordance for direct perception in autonomous driving. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Santiago, Chile, pp.2722–2730, 2015. DOI: 10.1109/ICCV.2015.312.Google Scholar
- [67]P. Stahl, B. Donmez, G. A. Jamieson. Anticipation in driving: The role of experience in the efficacy of pre-event conflict cues. IEEE Transactions on Human-Machine Systems, vol.44, no.5, pp.603–613, 2014. DOI: 10.1109/THMS.2014.2325558.CrossRefGoogle Scholar
- [68]S. J. Pan, Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. DOI: 10.1109/TKDE.2009.191.CrossRefGoogle Scholar
- [69]N. Segev, M. Harel, S. Mannor, K. Crammer, R. El-Yaniv. Learn on source, refine on target: A model transfer learning framework with random forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 9, pp.1811–1824, 2017. DOI: 10.1109/TPAMI.2016.2618118.CrossRefGoogle Scholar
- [70]D. Mitrovic. Reliable method for driving events recognition. IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 2, pp. 198–205, 2005. DOI: 10.1109/TITS.2005.848367.CrossRefGoogle Scholar
- [71]B. F. Wu, Y. H. Chen, C. H. Yeh, Y. F. Li. Reasoningbased framework for driving safety monitoring using driving event recognition. IEEE Transactions on Intelligent Transportation Systems, vol.14, no. 3, pp. 1231–1241, 2013. DOI: 10.1109/TITS.2013.2257759.Google Scholar
- [72]A. Ramirez, E. Ohn-Bar, M. Trivedi. Integrating motion and appearance for overtaking vehicle detection. In Proceedings of IEEE Intelligent Vehicles Symposium Proceedings, IEEE, Dearborn, USA, pp.96–101, 2014. DOI: 10.1109/IVS.2014.6856598.Google Scholar
- [73]J. D. Alonso, E. R. Vidal, A. Rotter, M. Muhlenberg. Lane-change decision aid system based on motiondriven vehicle tracking. IEEE Transactions on Vehicular Technology, vol. 57, no. 5, pp. 2736–2746, 2008. DOI: 10.1109/TVT.2008.917220.CrossRefGoogle Scholar
- [74]Y. Zhu, D. Comaniciu, M. Pellkofer, T. Koehler. Reliable detection of overtaking vehicles using robust information fusion. IEEE Transactions on Intelligent Transportation Systems, vol.7, no.4, pp.401–414, 2006. DOI: 10.1109/TITS.2006.883936.CrossRefGoogle Scholar
- [75]F. Garcia, P. Cerri, A. Broggi, A. De La Escalera, J. M. Armingol. Data fusion for overtaking vehicle detection based on radar and optical flow. In Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, Alcala de Henares, Spain, pp. 494–499, 2012. DOI: 10.1109/IVS.2012.6232199.Google Scholar
- [76]Deutscher Verkehrssicherheitsrat. DVR-Report: Fachmagazin für Verkehrssicherheit. https://www. dvr.de/presse/dvr-report/2017-04.Google Scholar
- [77]Auto Club Europa (ACE). Reviere der blinkmuffel. http: //www.ace-online.de/fileadmin/user_uploads/Der_Club/Dokumente/10.07.2008_Grafik_Blinkmuffel_l.pdf.Google Scholar
- [78]D. Kasper, G. Weidl, T. Dang, G. Breuel, A. Tamke, A. Wedel, W. Rosenstiel. Object-oriented Bayesian networks for detection of lane change maneuvers. IEEE Intelligent Transportation Systems Magazine, vol.4, no.3, pp.19–31, 2012. DOI: 10.1109/MITS.2012.2203229.CrossRefGoogle Scholar
- [79]W. Yao, Q. Q. Zeng, Y. P. Lin, D. H. Xu, H. J. Zhao, F. Guillemard, S. Geronimi, F. Aioun. On-road vehicle trajectory collection and scene-based lane change analysis: Part II. IEEE Transactions on Intelligent Transportation Systems, vol.18, no.1, pp.206–220, 2017. DOI: 10.1109/TITS.2016.2571724.CrossRefGoogle Scholar
- [80]T. Gindele, S. Brechtel, R. Dillmann. A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments. In Proceedings of the 13th International Conference on Intelligent Transportation Systems, IEEE, Funchal, Portugal, pp. 1625–1631, 2010. DOI: 10.1109/ITSC.2010.5625262.CrossRefGoogle Scholar
- [81]S. Sivaraman, B. Morris, M. Trivedi. Learning multi-lane trajectories using vehicle-based vision. In Proceedings of IEEE Conference on Computer Vision Workshops, IEEE, Barcelona, Spain, pp. 2070–2076, 2011. DOI: 10.1109/ICCVW. 2011.6130503.Google Scholar
- [82]R. K. Satzoda, M. M. Trivedi. Overtaking & receding vehicle detection for driver assistance and naturalistic driving studies. In Proceedings of the 17th International Conference on Intelligent Transportation Systems, IEEE, Qingdao, China, pp.697–702, 2014. DOI: 10.1109/ITSC.2014.6957771.Google Scholar
- [83]M. S. Kristoffersen, J. V. Dueholm, R. K. Satzoda, M. M. Trivedi, A. Mogelmose, T. B. Moeslund. Towards semantic understanding of surrounding vehicular maneuvers: A panoramic vision-based framework for realworld highway studies. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Las Vegas, USA, pp. 1584–1591, 2016. DOI: 10.1109/CVPRW.2016.197.Google Scholar
- [84]J. V. Dueholm, M. S. Kristoffersen, R. K. Satzoda, T. B. Moeslund, M. M. Trivedi. Trajectories and maneuvers of surrounding vehicles with panoramic camera arrays. IEEE Transactions on Intelligent Vehicles, vol. 1, no. 2, pp. 203214, 2016. DOI: 10.1109/TIV.2016.2622921.CrossRefGoogle Scholar
- [85]A. Khosroshahi, E. Ohn-Bar, M. M. Trivedi. Surround vehicles trajectory analysis with recurrent neural networks. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, pp. 2267–2272, 2016. DOI: 10.1109/ITSC.2016.7795922.Google Scholar
- [86]S. Ernst, J. Rieken, M. Maurer. Behaviour recognition of traffic participants by using manoeuvre primitives for automated vehicles in urban traffic. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, 2016. DOI: 10.1109/ITSC.2016.7795674.Google Scholar
- [87]S. Busch, T. Schindler, T. Klinger, C. Brenner. Analysis of Spatio-temporal traffic patterns based on pedestrian trajectories. In Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, vol.XLI-B2, pp.497–503, 2016. DOI: 10.5194/isprsarchives-XLI-B2-497-2016.CrossRefGoogle Scholar
- [88]J. Hariyono, K. H. Jo. Detection of pedestrian crossing road: A study on pedestrian pose recognition. Neurocomputing, vol.234, pp.144–153, 2017. DOI: 10.1016/j.neucom.2016.12.050.Google Scholar
- [89]R. M. Mueid, C. Ahmed, M. A. R. Ahad. Pedestrian activity classification using patterns of motion and histogram of oriented gradient. Journal on Multimodal User Interfaces, vol. 10, no. 4, pp. 299–305, 2016. DOI: 10.1007/s12193-015-0178-3.CrossRefGoogle Scholar
- [90]R. Quintero, I. Parra, D. F. Llorca, M. A. Sotelo. Pedestrian intention and pose prediction through dynamical models and behaviour classification. In Proceedings of the 18th International Conference on Intelligent Transportation Systems, IEEE, Las Palmas, Spain, pp. 83–88, 2015. DOI: 10.1109/ITSC.2015.22.Google Scholar
- [91]M. Ogawa, H. Fukamachi, R. Funayama, T. Kindo. CYKLS: Detect pedestrian’s dart focusing on an appearance change. In Proceedings of the 12th International Conference on Computer Vision, Springer-Verlag, Florence, Italy, pp. 556–565, 2012. DOI: 10.1007/978-3-642-33868-7_55.Google Scholar
- [92]F. H. Chan, Y. T. Chen, Y. Xiang, M. Sun. Anticipating accidents in dashcam videos. In Proceedings of the 13th Asian Conference on Computer Vision, Springer, Taipei, China, pp. 136–153, 2016. DOI: 10.1007/978-3-319-54190-7_9.Google Scholar
- [93]Y. J. Xia, W. W. Xu, L. M. Zhang, X. M. Shi, K. Mao. Integrating 3D structure into traffic scene understanding with RGB-D data. Neurocomputing, vol. 151, pp. 700–709, 2015. DOI: 10.1016/j.neucom.2014.05.091.CrossRefGoogle Scholar
- [94]A. Tageldin, M. H. Zaki, T. Sayed. Examining pedestrian evasive actions as a potential indicator for traffic conflicts. IET Intelligent Transport Systems, vol.11, no.5, pp.282–289, 2017. DOI: 10.1049/iet-its.2016.0066.CrossRefGoogle Scholar
- [95]F. Westerhuis, D. De Waard. Reading cyclist intentions: Can a lead cyclists behaviour be predicted? Accident Analysis & Prevention, vol. 105, pp. 146–155, 2017. DOI: 10.1016/j.aap.2016.06.026.CrossRefGoogle Scholar
- [96]D. Manstetten. Behaviour prediction and intention detection in UR:BAN VIE -overview and introduction. URBAN Human Factors in Traffic, K. Bengler, J. Druke, S. Hoffmann, D. Manstetten, A. Neukum, Eds., Wiesbaden, Germany: Springer, 2018. DOI: 10.1007/978-3-658-15418-9_8.Google Scholar
- [97]F. Schneemann, P. Heinemann. Context-based detection of pedestrian crossing intention for autonomous driving in urban environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, South Korea, pp. 2243–2248, 2016. DOI: 10.1109/IROS.2016.7759351.Google Scholar
- [98]T. Fugger, B. Randles, A. Stein, W. Whiting, B. Gallagher. Analysis of pedestrian gait and Perception-reaction at signal-controlled crosswalk intersections. Transportation Research Record: Journal of the Transportation Research Board, vol. 1705, no. 1, pp.20–25, 2000. DOI: 10.3141/170504.Google Scholar
- [99]N. Schneider, D. M. Gavrila. Pedestrian path prediction with recursive Bayesian filters: A comparative study. In Proceedings of the 35th German Conference on Pattern Recognition, Springer, Saarbrücken, Germany, pp. 174–183, 2013. DOI: 10.1007/978-3-642-40602-7_18.Google Scholar
- [100]M. Goldhammer, M. Gerhard, S. Zernetsch, K. Doll, U. Brunsmann. Early prediction of a pedestrian’s trajectory at intersections. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems, IEEE, The Hague, The Netherlands, pp.237–242, 2013. DOI: 10.1109/ITSC.2013.6728239.Google Scholar
- [101]M. Goldhammer, K. Doll, U. Brunsmann, A. Gensler, B. Sick. Pedestrians trajectory forecast in public traffic with artificial neural networks. In Proceedings of the 22nd International Conference on Pattern Recognition, IEEE, Stockholm, Sweden, pp.4110–4115, 2014. DOI: 10.1109/ICPR.2014.704.Google Scholar
- [102]C. G. Keller, D. M. Gavrila. Will the pedestrian cross? A study on pedestrian path prediction. IEEE Transactions on Intelligent Transportation Systems, vol.15, no.2, pp.494–506, 2014. DOI: 10.1109/TITS.2013.2280766.CrossRefGoogle Scholar
- [103]S. Koehler, M. Goldhammer, S. Bauer, S. Zecha, K. Doll, U. Brunsmann, K. Dietmayer. Stationary detection of the Pedestrians intention at intersections. IEEE Intelligent Transportation Systems Magazine, vol. 5, no. 4, pp. 87–99, 2013. DOI: 10.1109/MITS.2013.2276939.CrossRefGoogle Scholar
- [104]J. F. P. Kooij, N. Schneider, F. Flohr, D. M. Gavrila. Context-based pedestrian path prediction. In Proceedings of the 13th European Conference on Computer Vision, Springer, Zurich, Switzerland, pp.618–633, 2014. DOI: 10.1007/978-3-319-10599-4_40.Google Scholar
- [105]J. Y. Kwak, B. C. Ko, J. Y. Nam. Pedestrian intention prediction based on dynamic fuzzy automata for vehicle driving at nighttime. Infrared Physics & Technology, vol.81, pp. 41–51, 2017. DOI: 10.1016/j.infrared.2016.12.014.Google Scholar
- [106]G. Q. Xu, L. Liu, Y. S. Ou, Z. J. Song. Dynamic modeling of driver control strategy of lane-change behavior and trajectory planning for collision prediction. IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp. 1138–1155, 2012. DOI: 10.1109/TITS.2012.2187447.CrossRefGoogle Scholar
- [107]R. N. Dang, J. Q. Wang, S. E. Li, K. Q. Li. Coordinated adaptive cruise control system with lane-change assistance. IEEE Transactions on Intelligent Transportation Systems, vol.16, no.5, pp.2373–2383, 2015. DOI: 10.1109/TITS.2015.2389527.CrossRefGoogle Scholar
- [108]W. Liu, S. W. Kim, K. Marczuk, M. H. Ang. Vehicle motion intention reasoning using cooperative perception on urban road. In Proceedings of the 17th International Conference on Intelligent Transportation Systems, IEEE, Qingdao, China, pp.424–430, 2014. DOI: 10.1109/ITSC.2014.6957727.Google Scholar
- [109]Y. Hou, P. Edara, C. Sun. Modeling mandatory lane changing using Bayes classifier and decision trees. IEEE Transactions on Intelligent Transportation Systems, vol. 15, no.2, pp. 647–655, 2014. DOI: 10.1109/TITS.2013.2285337.CrossRefGoogle Scholar
- [110]D. Lee, A. Hansen, J. K. Hedrick. Probabilistic inference of traffic participants lane change intention for enhancing adaptive cruise control. In Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, Los Angeles, USA, pp.855–860, 2017. DOI: 10.1109/IVS.2017.7995823.Google Scholar
- [111]Y. L. Gu, Y. Hashimoto, L. T. Hsu, S. Kamijo. Motion planning based on learning models of pedestrian and driver behaviors. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, pp.808–813, 2016. DOI: 10.1109/ITSC.2016.7795648.Google Scholar
- [112]W. D. Xu, J. Pan, J. Q. Wei, J. M. Dolan. Motion planning under uncertainty for on-road autonomous driving. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 2507–2512, 2014. DOI: 10.1109/ICRA.2014.6907209.Google Scholar
- [113]T. Y. Gu, J. M. Dolan, J. W. Lee. Automated tactical maneuver discovery, reasoning and trajectory planning for autonomous driving. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, South Korea, pp.5474–5480, 2016. DOI: 10.1109/IROS.2016.7759805.Google Scholar
- [114]N. Nagasaka, M. Harada. Towards safe, smooth, and stable path planning for on-road autonomous driving under uncertainty. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, pp.795–801, 2016. DOI: 10.1109/ITSC.2016.7795646.Google Scholar
- [115]K. Jo, M. Lee, J. Kim, M. Sunwoo. Tracking and behavior reasoning of moving vehicles based on roadway geometry constraints. IEEE Transactions on Intelligent Transportation Systems, vol.18, no.2, pp.460–476, 2017. DOI: 10.1109/TITS.2016.2605163.CrossRefGoogle Scholar
- [116]E. A. I. Pool, J. F. P. Kooij, D. M. Gavrila. Using road topology to improve cyclist path prediction. In Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, Los Angeles, USA, pp. 289–296, 2017. DOI: 10.1109/IVS.2017.7995734.Google Scholar
- [117]N. Evestedt, E. Ward, J. Folkesson, D. Axehill. Interaction aware trajectory planning for merge scenarios in congested traffic situations. In Proceedings of the 19th International Conference on Intelligent Transportation Systems, IEEE, Rio de Janeiro, Brazil, pp. 465–472, 2016. DOI: 10.1109/ITSC.2016.7795596.Google Scholar
- [118]H. M. Eraqi, M. N. Moustafa, J. Honer. End-to-end deep learning for steering autonomous vehicles considering temporal dependencies. arXiv:1710.03804, 2017.Google Scholar
- [119]L. Caltagirone, M. Bellone, L. Svensson, M. Wahde. Simultaneous perception and path generation using fully convolutional neural networks. arXiv:1703.08987, 2017.Google Scholar
- [120]Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, F. Durand. What do different evaluation metrics tell us about saliency models? arXiv:1604.03605, 2016.Google Scholar
- [121]B. W. Tatler. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, vol. 7, no. 14–17, pp. 4.1–17, 2007. DOI: 10.1167/7.14.4.Google Scholar
- [122]R. J. Peters, A. Iyer, L. Itti, C. Koch. Components of bottom-up gaze allocation in natural images. Vision Research, vol. 45, no. 18, pp. 2397–2416, 2005. DOI: 10.1016/j.visres.2005.03.019.CrossRefGoogle Scholar
- [123]M. Kümmerer, T. S. A. Wallis, M. Bethge. Informationtheoretic model comparison unifies saliency metrics. In Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no.52, pp. 16054–16059, 2015. DOI: 10.1073/pnas. 1510393112.CrossRefGoogle Scholar
- [124]M. J. Swain, D. H. Ballard. Color indexing. International Journal of Computer Vision, vol.7, no.1, pp.11–32, 1991. DOI: 10.1007/BF00130487.CrossRefGoogle Scholar
- [125]O. Le Meur, P. Le Callet, D. Barba. Predicting visual fixations on video based on low-level visual features. Vision Research, vol.47, no.19, pp.2483, 2498. DOI: 10.1016/j.visres.2007.06.015.CrossRefGoogle Scholar
- [126]O. Pele, M. Werman. A linear time histogram metric for improved sift matching. In Proceedings of the 10th European Conference on Computer Vision: Part III, Marseille, France, pp.495–508, 2008. DOI: 10.1007/978-3-540-88690-7_37.Google Scholar
- [127]Y. Rubner, C. Tomasi, L. J. Guibas. The earth movers distance as a metric for image retrieval. International Journal of Computer Vision, vol.40, no.2, pp.99–121, 2000. DOI: 10.1023/A:1026543900054.zbMATHCrossRefGoogle Scholar
- [128]C. Sammut, G. I. Webb. Encyclopedia of Machine Learning, Boston, MA: Springer, 2010.zbMATHCrossRefGoogle Scholar