Advertisement

Pinning control and controllability of complex dynamical networks

  • Guanrong ChenEmail author
Review

Abstract

In this article, the notion of pinning control for directed networks of dynamical systems is introduced, where the nodes could be either single-input single-output (SISO) or multi-input multi-output (MIMO) dynamical systems, and could be non-identical and nonlinear in general but will be specified to be identical linear time-invariant (LTI) systems here in the study of network controllability. Both state and structural controllability problems will be discussed, illustrating how the network topology, node-system dynamics, external control inputs and inner dynamical interactions altogether affect the controllability of a general complex network of LTI systems, with necessary and sufficient conditions presented for both SISO and MIMO settings. To that end, the controllability of a special temporally switching directed network of linear time-varying (LTV) node systems will be addressed, leaving some more general networks and challenging issues to the end for research outlook.

Keywords

Complex network pinning control controllability linear time-invariant (LTI) system temporally switching network graph theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The author thanks Mario di Bernardo, Jian-Xi Gao, Bao- Yu Hou, Xiang Li, Yang-Yu Liu, LinWang, Xiao-FanWang, Lin-Ying Xiang and Gang Yan for their valuable comments and discussions.

References

  1. [1]
    D. J. Watts, S. H. Strogatz. Collective dynamics of ‘smallworld’ networks. Nature, vol. 393, no. 6684, pp. 440–442, 1998.CrossRefGoogle Scholar
  2. [2]
    A. L. Barabási, R. Albert. Emergence of scaling in random networks. Science, vol. 286, no. 5439, pp. 509–512, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Erdos, A. Rényi. On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy Sciences, vol. 5, pp. 17–60, 1960.MathSciNetzbMATHGoogle Scholar
  4. [4]
    C. K. Chui, G. R. Chen. Linear Systems and Optimal Control, New York, USA: Springer-Verlag, 1989.CrossRefzbMATHGoogle Scholar
  5. [5]
    G. R. Chen, Z. S. Duan. Network synchronizability analysis: A graph-theoretic approach. Chaos, vol. 18, Article number 037102, 2008.zbMATHGoogle Scholar
  6. [6]
    X. F. Wang, G. R. Chen. Pinning control of scale-free dynamical networks. Physica A: Statistical Mechanics and its Applications, vol. 310, no. 3–4, pp. 521–531, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    X. Li, X. F. Wang, G. R. Chen. Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2074–2087, 2004.MathSciNetCrossRefGoogle Scholar
  8. [8]
    G. R. Chen, X. F. Wang, X. Li. Introduction to Complex Networks: Models, Structures and Dynamics, 2nd ed., Beijing, China: Higher Education Press.Google Scholar
  9. [9]
    A. Cho. Scientific link-up yields ‘control panel’ for networks. Science, vol. 332, no. 6031, pp. 777, 2011.CrossRefGoogle Scholar
  10. [10]
    I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, vol. 433, no. 7025, pp. 513–516, 2005.CrossRefGoogle Scholar
  11. [11]
    G. R. Chen. Pinning control and synchronization on complex dynamical networks. International Journal of Control, Automation and Systems, vol. 12, no. 2, pp. 221–230, 2014.CrossRefGoogle Scholar
  12. [12]
    X. F.Wang, H. S. Su. Pinning control of complex networked systems: A decade after and beyond. Annual Reviews in Control, vol. 38, no. 1, pp. 103–111, 2014.CrossRefGoogle Scholar
  13. [13]
    F. F. Li. Pinning control design for the stabilization of Boolean networks. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 7, pp. 1585–1590, 2016.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. Tang, H. J. Gao, J. Kurths, J. A. Fang. Evolutionary pinning control and its application in UAV coordination. IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 828–838, 2012.CrossRefGoogle Scholar
  15. [15]
    C. T. Lin. Structural controllability. IEEE Transactions on Automatic Control, vol. 19, no. 3, pp. 201–208, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. L. Willems. Structural controllability and observability. Systems & Control Letters, vol. 8, no. 1, pp. 5–12, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Mayeda, T. Yamada. Strong structural controllability. SIAM Journal on Control and Optimization, vol. 17, no. 1, pp. 123–138, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Y. Liu, A. L. Barabási. Control principles of complex networks, [Online], Available: https://arxiv.org/abs/1508.05384, 2015.Google Scholar
  19. [19]
    G. Yan, J. Ren, Y. C. Lai, C. H. Lai, B. W. Li. Controlling complex networks: How much energy is needed?. Physical Review Letters, vol. 108, no. 21, Article number 218703, 2012.CrossRefGoogle Scholar
  20. [20]
    W. X. Wang, X. Ni, Y. C. Lai, C. Grebogi. Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E, vol. 85, no. 2, Article number 026115, 2012.CrossRefGoogle Scholar
  21. [21]
    T. Nepusz, T. Vicsek. Controlling edge dynamics in complex networks. Nature Physics, vol. 8, no. 7, pp. 568–573, 2012.CrossRefGoogle Scholar
  22. [22]
    T. Jia, Y. Y. Liu, E. Csóka, M. Pósfai, J. J. Slotine, A. L. Barabási. Emergence of bimodality in controlling complex networks. Nature Communications, vol. 4, Article number 2002, 2013.CrossRefGoogle Scholar
  23. [23]
    T. Jia, A. L. Barabási. Control capacity and a random sampling method in exploring controllability of complex networks. Scientific Reports, vol. 3, Article number 2354, 2013.Google Scholar
  24. [24]
    Z. Z. Yuan, C. Zhao, Z. R. Di, W. X. Wang, Y. C. Lai. Exact controllability of complex networks. Nature Communications, vol. 4, Article number 2447, 2013.Google Scholar
  25. [25]
    G. Menichetti, L. Dall’Asta, G. Bianconi. Network controllability is determined by the density of low in-degree and out-degree nodes. Physical Review Letters, vol. 113, no. 7, Article number 078701, 2014.CrossRefGoogle Scholar
  26. [26]
    J. X. Gao, Y. Y. Liu, R. M. D’Souza, A. L. Barabási. Target control of complex networks. Nature Communications, vol. 5, Article number 5415, 2014.CrossRefGoogle Scholar
  27. [27]
    A. E. Motter. Networkcontrology. Chaos, vol. 25, no. 9, Article number 097621, 2015.MathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Yan, G. Tsekenis, B. Barzel, J. J. Slotine, Y. Y. Liu, A. L. Barabási. Spectrum of controlling and observing complex networks. Nature Physics, vol. 11, no. 9, pp. 779–786, 2015.CrossRefGoogle Scholar
  29. [29]
    A. J. Gates, L. M. Rocha. Control of complex networks requires both structure and dynamics. Scientific Reports, vol. 6, Article number 24456, 2016.CrossRefGoogle Scholar
  30. [30]
    T. H. Summers, F. L. Cortesi and J. Lygeros. On submodularity and controllability in complex dynamical networks. IEEE Transactions on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.MathSciNetCrossRefGoogle Scholar
  31. [31]
    B. Das, B. Subudhi, B. B. Pati. Cooperative formation control of autonomous underwater vehicles: An overview. International Journal of Automation and Computing, vol. 13, no. 3, pp. 199–225, 2016.CrossRefGoogle Scholar
  32. [32]
    F. Sorrentino, M. di Bernardo, F. Garofalo, G. R. Chen. Controllability of complex networks via pinning. Physical Review E, vol. 75, no. 4, Article number 046103, 2007.CrossRefGoogle Scholar
  33. [33]
    L. M. Pecora, T. L. Carroll. Master stability functions for synchronized coupled systems. Physical Review Letters, vol. 80, no. 10, pp. 2109–2112, 1998.CrossRefGoogle Scholar
  34. [34]
    M. Porfiri, M. di Bernardo. Criteria for global pinningcontrollability of complex networks. Automatica, vol. 44, no. 12, pp. 3100–3106, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    Y. L. Zou, G. R. Chen. Pinning controllability of asymmetrical weighted scale-free networks. Europhysics Letters, vol. 84, no. 5, Article number 58005, 2008.CrossRefGoogle Scholar
  36. [36]
    L. Y. Xiang, F. Chen, G. R. Chen. Pinning synchronization of networked multi-agent systems: Spectral analysis. Control Theory and Technology, vol. 13, no. 1, pp. 45–54, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    L. Lováz, M. D. Plummer. Matching Theory, New York: Elsevier, 1986.Google Scholar
  38. [38]
    Y. Y. Liu, J. J. Slotine, A. L. Barabási. Controllability of complex networks. Nature, vol. 473, no. 7346, pp. 167–173, 2011.CrossRefGoogle Scholar
  39. [39]
    L. Wang, X. F. Wang, G. Chen. Controllability of networked higher-dimensional systems with one-dimensional communication channels. Philosophical Transactions of the Royal Society A, to be published.Google Scholar
  40. [40]
    R. Shields, J. Pearson. Structural controllability of multiinput linear systems. IEEE Transactions on Automatic Control, vol. 21, no. 2, pp. 203–212, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J. M. Dion, C. Commaulta, J. van der Woude. Generic properties and control of linear structured systems: A survey. Automatica, vol. 39, no. 7, pp. 1125–1144, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Lombardi, M. Hornquist. Controllability analysis of networks. Physical Review E, vol. 75, no. 5, Article number 056110, 2007.CrossRefGoogle Scholar
  43. [43]
    C. T. Lin. System structure and minimal structure controllability. IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 855–862, 1977.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    J. C. Jarczyk, F. Svaricek, B. Alt. Strong structural controllability of linear systems revisited. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, Orlando, USA, pp. 1213–1218, 2011.CrossRefGoogle Scholar
  45. [45]
    A. Chapman. Strong structural controllability of networked dynamics. Semi-Autonomous Networks, A. Chapman, Ed., New York: Springer, pp. 135–150, 2015.Google Scholar
  46. [46]
    H. G. Tanner. On the controllability of nearest neighbor interconnections. In Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE, Nassau, Bahamas, 2004, vol. 3, pp. 2467–2472.Google Scholar
  47. [47]
    L. Y. Xiang, J. J. H. Zhu, F. Chen, G. R. Chen. Controllability of weighted and directed networks with nonidentical node dynamics. Mathematical Problems in Engineering, vol. 2013, Article number 405034, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    T. Zhou. On the controllability and observability of networked dynamic systems. Automatica, vol. 52, pp. 63–75, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    L. Wang, G. R. Chen, X. F. Wang, W. K. S. Tang. Controllability of networked MIMO systems. Automatica, vol. 69, pp. 405–409, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    L. Wang, G. R. Chen, X. F. Wang, W. K. S. Tang. Controllability of networked MIMO systems, [Online], Available: https://arxiv.org/abs/1505.01255v3, 2015.zbMATHGoogle Scholar
  51. [51]
    B. Liu, T. G. Chu, L. Wang, G. M. Xie. Controllability of a leader-follower dynamic network with switching topology. IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008.MathSciNetCrossRefGoogle Scholar
  52. [52]
    X. M. Liu, H. Lin, B. M. Chen. Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. International Journal of Control, vol. 86, no. 2, pp. 222–231, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    X. M. Liu, H. Lin, B. M. Chen. Structural controllability of switched linear systems. Automatica, vol. 49, no. 12, pp. 3531–3537, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    P. Holme, J. Saramäki. Temporal networks. Physics Reports, vol. 519, no. 3, pp. 97–125, 2012.CrossRefGoogle Scholar
  55. [55]
    X. Li, P. Yao, Y. J. Pan. Towards structural controllability of temporal complex networks. In Complex Systems and Networks: Dynamics, Controls and Applications, J. H. Lü, X. H. Yu, G. R. Chen, W. W. Yu, Eds., Berlin Heidelberg: Springer, pp. 341–371, 2015.Google Scholar
  56. [56]
    M. Pósfai, P. Hövel. Structural controllability of temporal networks. New Journal of Physics, vol. 16, no. 12, Article number 123055, 2014.MathSciNetCrossRefGoogle Scholar
  57. [57]
    G. Reissig, C. Hartung, F. Svaricek. Strong structural controllability and observability of linear time-varying systems. IEEE Transactions on Automatic Control, vol. 59, no. 11, pp. 3087–3092, 2014.MathSciNetCrossRefGoogle Scholar
  58. [58]
    Y. J. Pan, X. Li. Structural controllability and controlling centrality of temporal networks. PLoS One, vol. 9, no. 4, Article number 0094998, 2014.CrossRefGoogle Scholar
  59. [59]
    L. M. Silverman, H. E. Meadows. Controllability and observability in time-variable linear systems. SIAM Journal on Control, vol. 5, no. 1, pp. 64–73, 1967.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    B. Y. Hou, X. Li, G. R. Chen. Structural controllability of temporally switching networks. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 10, pp. 1771–1781, 2016.MathSciNetCrossRefGoogle Scholar
  61. [61]
    Y. Y. Liu, J. J. Slotine, A. L. Barabási. Observability of complex systems. Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 7, pp. 2460–2465, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    B. B. Wang, L. Gao, Y. Gao, Y. Deng, Y. Wang. Controllability and observability analysis for vertex domination centrality in directed networks. Scientific Reports, vol. 4, Article number 5399, 2014.Google Scholar
  63. [63]
    A. M. Li, S. P. Cornelius, Y. Y. Liu, L. Wang, A. L. Barabási. The fundamental advantages of temporal networks, [Online], Available: https://arxiv.org/abs/1607.06168, 2016.Google Scholar
  64. [64]
    S. Ghosh, J. Ruths. Structural control of single-input rank one bilinear systems. Automatica, vol. 64, pp. 8–17, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    A. J. Gates, L. M. Rocha. Control of complex networks requires both structure and dynamics. Scientific Reports, vol. 6, Article number 24456, 2016.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina

Personalised recommendations