A Linear Quadratic Controller Design Incorporating a Parametric Sensitivity Constraint

  • Mohamed YagoubiEmail author
Research Article


The purpose of this paper is to propose a synthesis method of parametric sensitivity constrained linear quadratic (SCLQ) controller for an uncertain linear time invariant (LTI) system. System sensitivity to parameter variation is handled through an additional quadratic trajectory parametric sensitivity term in the standard LQ criterion to be minimized. The main purpose here is to find a suboptimal linear quadratic control taking explicitly into account the parametric uncertainties. The paper main contribution is threefold: 1) A descriptor system approach is used to show that the underlying singular linear-quadratic optimal control problem leads to a non-standard Riccati equation. 2) A solution to the proposed control problem is then given based on a connection to the so-called Lur’e matrix equations. 3) A synthesis method of multiple parametric SCLQ controllers is proposed to cover the whole parametric uncertainty while degrading as less as possible the intrinsic robustness properties of each local linear quadratic controller. Some examples are presented in order to illustrate the effectiveness of the approach.


Linear quadratic control parametric uncertainties trajectory sensitivity non-standard Riccati equation Lur’e matrix equations linear time invariant (LMI) particle swarm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Yagoubi. A parametric sensitivity constrained linear quadratic controller. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, IEEE, Palermo, Italy 2014.Google Scholar
  2. [2]
    M. Yagoubi. Synthesis of multiple sensitivity constrained controllers for parametric uncertain LTI systems. In Proceedings of the 23rd Mediterranean Conference on Control and Automation, IEEE, Torremolinos, Spain, 2015.Google Scholar
  3. [3]
    E. Kreindler, Formulation of the minimum trajectory sensitivity problem. IEEE Transactions on Automatic Control, vol 14, no. 2, pp. 206–207, 1969.MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. M. Newmann, On attempts to reduce the sensitivity of the optimal linear regulator to a parameter change. International Journal of Control, vol 11, no. 6, pp. 1079–1084, 1970.MathSciNetCrossRefGoogle Scholar
  5. [5]
    P. J. Fleming, M. M. Newmann, Design algorithms for a sensitivity constrained suboptimal regulator. International Journal of Control, vol 25, no. 6, pp. 965–978, 1977.MathSciNetCrossRefGoogle Scholar
  6. [6]
    D. Kyr, M. Buchner. A parametric LQ approach to multiobjective control system design. In Proceedings of the 27th IEEE Conference on Decision and Control, IEEE, Austin, USA, pp. 1278–1282, 1988.CrossRefGoogle Scholar
  7. [7]
    A. Ansari, T. Murphey. Minimal parametric sensitivity trajectories for nonlinear systems. In Proceedings of 2013 American Control Conference, IEEE, Washington, USA, 2013.Google Scholar
  8. [8]
    G. P. Liu, R. J. Patton, Insensitive and robust control design via output feedback eigenstructure assignment. International Journal of Robust and Nonlinear Control, vol 10, no. 9, pp. 687–697, 2000.MathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Apkarian, Nonsmooth µ-synthesis. International Journal of Robust and Nonlinear Control, vol 21, no. 13, pp. 1493–1508, 2011.MathSciNetCrossRefGoogle Scholar
  10. [10]
    X. G. Guo, G. H. Yang, Insensitive output feedback H8 control of delta operator systems with insensitivity to sampling time jitter. International Journal of Robust and Nonlinear Control, vol 24, no. 4, pp. 725–743, 2014.MathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Yagoubi, P. Chevrel. A solution to the insensitive H2 problem and its application to automotive control design. In Proceedings of the 15th Triennial World Congress, IFAC, Barcelona, Spain, 2002.Google Scholar
  12. [12]
    M. Yagoubi, P. Chevrel. A convex method for the parametric insensitive H2 control problem. In Proceedings of the IFAC World Congress, IFAC, Czech Republic, 2005.Google Scholar
  13. [13]
    P. Chevrel, M. Yagoubi. A parametric insensitive H2 control design approach. International Journal of Robust and Nonlinear Control, vol. 14, no. 5, pp. 1283–1297, 2004.MathSciNetCrossRefGoogle Scholar
  14. [14]
    D. J. Bender, A. J. Laub, The linear-quadratic optimal regulator for descriptor systems. IEEE Transactions on Automatic Control, vol 32, no. 8, pp. 672–688, 1987.MathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Y. Ishihara, M. H. Terra, R. M. Sales, The full information and state feedback H2 optimal controllers for descriptor systems. Automatica, vol 39, no. 3, pp. 391–402, 2003.MathSciNetCrossRefGoogle Scholar
  16. [16]
    V. Ionescu, C. Oara, Generalized continuous-time Riccati theory. Linear Algebra and its Applications, vol 232, pp. 111–130, 1996.MathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Ferrante, L. Ntogramatzidis, The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control. Automatica, vol 50, no. 4, pp. 1176–1180, 2014.MathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Choi, R. Nagamune, R. Horowitz. Synthesis of multiple robust controllers for parametric uncertain LTI systems. In Proceedings of American Control Conference, IEEE, Minneapolis, USA, 2006.Google Scholar
  19. [19]
    W. Hafez, K. Loparo, M. Hashish, E. Rasmy. Sensitivityconstrained controller design for multi-parameter systems. In Proceedings of IASTED International Conference on Applied Control and Identification, Los Angles, USA, 1986.zbMATHGoogle Scholar
  20. [20]
    K. Takaba, T. Katayama. H2 output feedback control for descriptor systems. Automatica, vol. 34, no. 7, pp. 841–850, 1998.MathSciNetCrossRefGoogle Scholar
  21. [21]
    A. I. Lure. Some non-linear Problems in the Theory of Automatic Control: Nekotorye Nelineinye Zadachi Teorii Avtomaticheskogo Regulirovaniya, H. M. Stationery, 1957.Google Scholar
  22. [22]
    T. Reis, Lur’e equations and even matrix pencils. Linear Algebra and its Applications, vol 434, no. 1, pp. 152–173, 2011.MathSciNetCrossRefGoogle Scholar
  23. [23]
    J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation. IEEE Transactions on Automatic Control, vol 16, no. 6, pp. 621–634, 1971.MathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, Philadelphia, USA: SIAM, 1994.CrossRefGoogle Scholar
  25. [25]
    G. Calafiore, F. Dabbene, R. Tempo. Radial and uniform distributions in vector and matrix spaces for probabilistic robustness. Topics in Control and its Applications: A Tribute to Edward J. Davison, Springer, London, UK, pp. 17–31, 1999.CrossRefGoogle Scholar
  26. [26]
    R. C. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micromachine and Human Science, IEEE, Nagoya, Japan, pp. 39–43, 1995.CrossRefGoogle Scholar
  27. [27]
    I. C. Trelea, The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, vol 85, no. 6, pp. 317–325, 2003.MathSciNetCrossRefGoogle Scholar
  28. [28]
    F. van den Bergh, A. P. Engelbrecht. A new locally convergent particle swarm optimizer. In Proceedings of 2002 IEEE Conference on Systems, Man and cybernetics, IEEE, Hammamet, Tunisia, 2002.Google Scholar
  29. [29]
    J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of 2004 IEEE International Symposium on Computer Aided Control Systems Design, IEEE, Taipei, China, 2004.Google Scholar
  30. [30]
    J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, vol 11, no. 1–4, pp. 625–653, 1999.MathSciNetCrossRefGoogle Scholar
  31. [31]
    F. Gay, P. De Larminat. Robust vehicle dynamics control under cornering stiffness uncertainties with insensitive H2 theory. In Proceedings of the 4th World Multiconference on Circuits, Systems, Communications, Computers, CSCC, Vouliagmeni, Greece, 2000.Google Scholar
  32. [32]
    J. Vojtesek, P. Dostal. Optimal choice of weighting factors in adaptive linear quadratic control. International Journal of Automation and Computing, vol 11, no. 3, pp. 241–248, 2014.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.LUNAM University, Ecole des Mines de NantesNantesFrance
  2. 2.IRCCyN, UMR CNRS 6597 (Institut de Recherche en Communications et Cyberntique de Nantes)NantesFrance

Personalised recommendations