Advertisement

Contribution of the FPGAs for complex control algorithms: Sensorless DTFC with an EKF of an induction motor

  • Saber KrimEmail author
  • Soufien Gdaim
  • Abdellatif Mtibaa
  • Mohamed Faouzi Mimouni
Research Article

Abstract

In a conventional direct torque control (CDTC) of the induction motor drive, the electromagnetic torque and the stator flux are characterized by high ripples. In order to reduce the undesired ripples, several methods are used in the literature. Nevertheless, these methods increase the algorithm complexity and dependency on the machine parameters such as the space vector modulation (SVM). The fuzzy logic control method is utilized in this work to decrease these ripples. Moreover, to eliminate the mechanical sensor the extended kalman filter (EKF) is used, in order to reduce the cost of the system and the rate of maintenance. Furthermore, in the domain of controlling the real-time induction motor drives, two principal digital devices are used such as the hardware (FPGA) and the digital signal processing (DSP). The latter is a software solution featured by a sequential processing that increases the execution time. However, the FPGA is featured by a high processing speed because of its parallel processing. Therefore, using the FPGA it is possible to implement complex algorithms with low execution time and to enhance the control bandwidth. The large bandwidth is the key issue to increase the system performances. This paper presents the interest of utilizing the FPGAs to implement complex control algorithms of electrical systems in real time. The suggested sensorless direct torque control using the fuzzy logic (DTFC) of an induction motor is successfully designed and implemented on an FPGA Virtex 5 using xilinx system generator. The simulation and implementation results show proposed approach’s performances in terms of ripples, stator current harmonic waves, execution time, and short design time.

Keywords

Direct torque control fuzzy logic control (FLC) extended Kalman filter Xilinx system generator (XSG) field programmable gate array (FPGA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Takahashi, T. Noguchi. A new quick-response and high efficiency control strategy of an induction motor. IEEE Transactions on Industry Applications, vol. IA-22, no. 5, pp. 820–827, 1986.CrossRefGoogle Scholar
  2. [2]
    M. Depenbrock. Direct self-control (DSC) of inverter-fed induction machine. IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 420–429, 1988.CrossRefGoogle Scholar
  3. [3]
    D. Casadei, F. Profumo, G. Serra, A. Tani. FOC and DTC: Two viable schemes for induction motors torque control. IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 779–787, 2002.CrossRefGoogle Scholar
  4. [4]
    G. S. Buja, M. P. Kazmierkowski. Direct torque control of PWM inverter–fed AC motors–A survey. IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 744–757, 2004.CrossRefGoogle Scholar
  5. [5]
    M. S. Merzoug, F. Naceri. Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM). World Academy of Science, Engineering & Technolog, vol. 47, pp. 299–304, 2008.Google Scholar
  6. [6]
    S. Krim, S. Gdaim, A. Mtibaa, M. F. Mimouni. FPGAbased implementation direct torque control of induction motor. International Journal of Power Electronics and Drive System, vol. 5, no. 3, pp. 293–304, 2015.Google Scholar
  7. [7]
    C. Patel, P. P. Rajeevan, D. Anubrata, R. Ramchand, K. Gopakumar. Fast direct torque control of an open-end induction motor drive using 12-sided polygonal voltage space vectors. IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 400–410, 2012.CrossRefGoogle Scholar
  8. [8]
    E. Monmasson, N. M. Cirstea. FPGA design methodology for industrial control systems–A review. IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1824–1842, 2007.Google Scholar
  9. [9]
    Y. C. Zhang, J. G. Zhu, Z. M. Zhao, W. Xu, D. G. Dorrell. An improved direct torque control for three–level inverterfed induction motor sensorless drive. IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1502–1513, 2012.CrossRefGoogle Scholar
  10. [10]
    G. Foo, M. F. Rahman. Sensorless direct torque and fluxcontrolled IPM synchronous motor drive at very low speed without signal injection. IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 395–403, 2010.CrossRefGoogle Scholar
  11. [11]
    G. D. Andreescu, C. I. Pitic, F. Blaabjerg, I. Boldea. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives. IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 393–402, 2008.CrossRefGoogle Scholar
  12. [12]
    V. Ambrozic, G. S. Buja, R. Menis. Band-constrained technique for direct torque control of induction motor. IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 776–784, 2004.CrossRefGoogle Scholar
  13. [13]
    C. Lascu, A. M. Trzynadlowski. Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive. IEEE Transactions on Industry Applications, vol. 40, no. 1, pp. 170–177, 2004.CrossRefGoogle Scholar
  14. [14]
    Y. S. Lai, J. H. Chen. A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Transactions on Energy Conversion, vol. 16, no. 3, pp. 220–227, 2001.MathSciNetCrossRefGoogle Scholar
  15. [15]
    B. H. Kenny, R. D. Lorenz. Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1093–1101, 2003.CrossRefGoogle Scholar
  16. [16]
    M. Mengoni, L. Zarri, A. Tani, G. Serra, D. Casadei. Stator flux vector control of induction motor drive in the field weakening region. IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 941–949, 2008.CrossRefGoogle Scholar
  17. [17]
    M. Jemli, H. Ben Azza, M. Boussak, M. Gossa. Sensorless indirect stator field orientation speed control for singlephase induction motor drive. IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1618–1627, 2009.CrossRefGoogle Scholar
  18. [18]
    M. Xiao. Modeling and adaptive sliding mode control of the catastrophic course of a high-speed underwater vehicle. International Journal of Automation and Computing, vol. 10, no. 3, pp. 210–216, 2013.CrossRefGoogle Scholar
  19. [19]
    K. Jamoussi, M. Ouali, L. Chrifi-Alaoui, H. Benderradji, A. El Hajjaji. Robust sliding mode control using adaptive switching gain for induction motors. International Journal of Automation and Computing, vol. 10, no. 4, pp. 303–311, 2013.CrossRefGoogle Scholar
  20. [20]
    I. Bendaas, F. Naceri, S. Belkacem. Improving asynchronous motor speed and flux loop control by using hybrid fuzzy-SMC controllers. International Journal of Automation and Computing, vol. 11, no. 4, pp. 361–367, 2014.CrossRefGoogle Scholar
  21. [21]
    S. Krim, S. Gdaim, A. Mtibaa, M. F. Mimouni. Real time implementation of high-performance direct torque control of induction motor on FPG A. International Review of Electrical Engineering, vol. 9, no. 5, pp. 919–929, 2014.Google Scholar
  22. [22]
    S. Kouro, R. Bernal, H. Miranda, C. A. Silva, J. Rodriguez. High-performance torque and flux control for multilevel inverter fed induction motors. IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2116–2123, 2007.CrossRefGoogle Scholar
  23. [23]
    Y. C. Zhang, J. G. Zhu, Y. G. Guo, W. Xu, Y. Wang, Z. M. Zhao. A sensorless DTC strategy of induction motor fed by three-level inverter based on discrete space vector modulation. In Proceedings of Australasian Universities Power Engineering Conference, IEEE, Adelaide, USA, pp. 1–6, 2009.Google Scholar
  24. [24]
    C. L. Toh, N. R. N. Idris, A. H. M. Yatim, N. D. Muhamad, M. Elbuluk. Implementation of a new torque and flux controllers for direct torque control (DTC) of induction machine utilizing digital signal processor (DSP) and field programmable gate arrays (FPGA). In Proceedings of the 36th IEEE Power Electronics Specialists Conference, IEEE, Recife, Brazil, pp. 1594–1599, 2005.Google Scholar
  25. [25]
    S. Bolognani, L. Tubiana, M. Zigliotto. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1741–1747, 2003.CrossRefGoogle Scholar
  26. [26]
    A. Akrad, M. Hilairet, D. Diallo. A sensorless PMSM drive using a two stage extended Kalman estimator. In Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, IEEE, Orlando, USA, pp. 2776–2781, 2008.Google Scholar
  27. [27]
    Texas Instruments Europe. Sensorless Control with Kalman Filter on TMS320 Fixed-point DSP. Texas Instruments, Literature Number: BPRA057, Northampton, UK, 1997.Google Scholar
  28. [28]
    B. Nahid-Mobarakeh, F. Meibody-Tabar, F. M. Sargos. Mechanical sensorless control of PMSM with online estimation of stator resistance. IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 457–471, 2004.CrossRefGoogle Scholar
  29. [29]
    M. Bendjedia, Y. Ait-Amirat, B. Walther, A. Berthon. Sensorless control of hybrid stepper motor. In Proceedings of European Conference on Power Electronics and Applications, pp. 1–10, 2007.Google Scholar
  30. [30]
    Y. Liu, Z. Q. Zhu, D. Howe. Simplified EKF based sensorless direct torque control of permanent magnet brushless AC drives. International Journal of Automation and Computing, vol. 1, no. 1, pp. 35–41, 2004.CrossRefGoogle Scholar
  31. [31]
    P. Corts, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, J. Rodriguez. Predictive control in power electronics and drives. IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312–4324, 2008.CrossRefGoogle Scholar
  32. [32]
    K. Drobnic, M. Nemec, D. Nedeljkovic, V. Ambrozic. Predictive direct control applied to AC drives and active power filter. IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1884–1893, 2009.CrossRefGoogle Scholar
  33. [33]
    University of Minnesota. Low Cost FPGA Based Replacement for dSPACE Units in the Electric Drives Laboratory, [Online], Available: http://cusp.umn.edu/ Napa 2013/Friday/Tom P Napa.pdf.Google Scholar
  34. [34]
    E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, M. W. Naouar. FPGAs in industrial control applications. IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 224–243. 2011.Google Scholar
  35. [35]
    M. Dagbagi, L. Idkhajine, E. Monmasson, I. Slama-Belkhodja. FPGA implementation of power electronic converter real-time model. In Proceedings of International Symposium on Power Electronics, Electrical Drives, Automation and Motion, IEEE, Sorrento, Italy, pp. 658–663, 2012.CrossRefGoogle Scholar
  36. [36]
    E. Monmasson, I. Bahri, L. Idkhajine, A. Maalouf, M. W. Naouar. Recent advancements in FPGA-based controllers for AC drives applications. In Proceedings of the 13th International Conference on Optimization of Electrical and Electronic Equipment, IEEE, Brasov, Romania, pp. 8–15, 2012.Google Scholar
  37. [37]
    M. Shahbazi, P. Poure, S. Saadate, M. R. Zolghadri. FPGAbased reconfigurable control for fault-tolerant back-to-back converter without redundancy. IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3360–3371, 2013.Google Scholar
  38. [38]
    J. C. Moctezuma, S. Sénchez, R. Álvarez, A. Sánchez. Architecture for filtering images using Xilinx system generator. In Proceedings of the 2nd WSEAS International Conference on Computer Engineering and Applications, World Scientific and Engineering Academy and Society, Stevens Point, Wisconsin, USA, pp. 284–289, 2008.Google Scholar
  39. [39]
    T. Saidani, M. Atri, D. Dia, R. Tourki. Using Xilinx system generator for real time hardware co-simulation of video processing system. Electronic Engineering and Computing Technology, S. Ao, L. Gelman, Eds., Netherlands: Springer, vol. 60, pp. 227–236, 2010.CrossRefGoogle Scholar
  40. [40]
    P. Vas. Sensorless Vector and Direct Torque Control, New York, USA: Oxford University Press, pp. 223–237, 1998.Google Scholar
  41. [41]
    S. Naaz, A. Alam, R. Biswas. Effect of different defuzzification methods in a fuzzy based load balancing application. International Journal of Computer Science, vol. 8, no. 5, pp. 261–267, 2011.Google Scholar
  42. [42]
    M. Messaoudi, H. Kraiem, M. Ben Hamed, L. Sbita, M. N. Abdelkrim. A robust sensorless direct torque control of induction motor based on MRAS and extended Kalman filter. Leonardo Journal of Sciences, vol. 7, no. 12, pp. 35–56, 2008.Google Scholar
  43. [43]
    System Generator for DSP User Guide. Xilinx, USA, UG640 (v11.4), December 2, 2009. [Online], Available: http://www.xilinx.com/support/documentation/ sw manuals/xilinx11/sysgen user.pdf.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Saber Krim
    • 1
    • 2
    • 3
    Email author
  • Soufien Gdaim
    • 2
  • Abdellatif Mtibaa
    • 1
    • 4
  • Mohamed Faouzi Mimouni
    • 2
    • 4
  1. 1.Laboratory of Electronics and Microelectronics EE, Faculty of SciencesUniversity of MonastirMonastirTunisia
  2. 2.Research Unit “Industrial Systems Study and Renewable Energy”University of MonastirMonastirTunisia
  3. 3.Polytechnic School of Engineering (PSE)University of SousseSousseTunisia
  4. 4.National Engineering SchoolUniversity of MonastirMonastirTunisia

Personalised recommendations