Advertisement

Design of Ethernet based data acquisition system for yaw rate and longitudinal velocity measurement in automobiles

  • K. Arun VenkateshEmail author
  • N. Mathivanan
Research Article

Abstract

Design of an Ethernet network compatible data acquisition system for the measurement of yaw rate and longitudinal velocity in automobiles is presented. The data acquisition system includes a base node and a remote node. The remote node consists of a micro electro mechanical system (MEMS) accelerometer, an MEMS gyroscope, an advanced RISC machines (ARM) CORTEX M3 microcontroller and an Ethernet PHY device. The remote node measures the yaw rate and the longitudinal velocity of an automobile and sends the measured values to the base node using Ethernet communication. The base node consists of an ARM CORTEX M3 microcontroller and an Ethernet PHY device. The base node receives the measured values and saves in a microSD card for further analysis. The characteristics of the network and the measurement system are studied and reported.

Keywords

In-vehicle networks Ethernet yaw rate longitudinal velocity complementary filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Navet, Y. Q. Song, F. Simonot-Lion, C. Wilwert. Trends in automotive communication systems. Proceedings of the IEEE, vol. 93, no. 6, pp. 1204–1223, 2005.CrossRefGoogle Scholar
  2. [2]
    H. Kopetz, W. Elmenreich, C. Mack. A comparison of LIN and TTP/A. In Proceedings of IEEE International Workshop on Factory Communication Systems, IEEE, Porto, USA, pp. 99–107, 2000.Google Scholar
  3. [3]
    F. Baronti, E. Petri, S. Saponara, L. Fanucci, R. Roncella, R. Saletti, P. D. Abramo, R. Serventi. Design and verification of hardware building blocks for high-speed and faulttolerant in-vehicle networks. IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 792–801, 2011.CrossRefGoogle Scholar
  4. [4]
    TTTech Computertechnik AG. Time-triggered Protocol TTP/C High Level Specification Document, Protocol Version 1. 1, Technical Report, TTAgroup, 2003.Google Scholar
  5. [5]
    W. Elmenreich, R. Ipp. Introduction to TTP/C and TTP/A. In Proceedings of the Workshop on Time-triggered and Real-time Communication Systems, pp. 1–9, 2003.Google Scholar
  6. [6]
    H. Kopetz, M. Holzmann, W. Elmenreich. A universal smart transducer interface: TTP/A. In Proceedings of Third IEEE International Symposium on Object-oriented Real-time Distributed Computing (ISORC 2000), IEEE, Newport, CA, USA, pp. 16–23, 2000.CrossRefGoogle Scholar
  7. [7]
    H. Kopetz. A Comparison of TTP/C and FlexRay. Research Report 10/2001, Institute of Computer Engineering, Vienna University of Technology, Wein, Austria, 2001.Google Scholar
  8. [8]
    A. Albert. Comparison of event-triggered and timetriggered concepts with regard to distributed control systems. In Proceedings of Embedded World, Nuremberger, Germany, pp. 235–252, 2004.Google Scholar
  9. [9]
    A. Ademaj, H. Kopetz, P. Grillinger, K. Steinhammer. Integration of Predictable and Flexible In-Vehicle Communication Using Time-triggered Ethernet, [Online], Available: http://www. vmars. tuwien. ac. at, June 11, 2013.Google Scholar
  10. [10]
    L. L. Bello. The case for ethernet in automotive communications. In Proceedings of SIGBED Review, Special Issue on the 10th International Workshop on Real-time Networks (RTN 2011), ACM,New York, USA, vol. 8, no. 4, pp. 7–15, 2011.MathSciNetGoogle Scholar
  11. [11]
    R. O. Ocaya, J. Minny. A TCP/IP framework for ethernetbased measurement, control and experiment data distribution. Journal of Instrumentation, vol. 5, 2010.Google Scholar
  12. [12]
    R. O. Ocaya. A framework for collaborative remote experimentation for a physical laboratory using a low cost embedded web server. Journal of Network and Computer Applications, vol. 34, no. 4, pp. 1408–1415, 2011.CrossRefGoogle Scholar
  13. [13]
    P. Doležel, V. Vašek, D. Janácová, K. Kolomazník, M. Zálešák. Modeling and microcontroller control of raw hide soaking in tannery industry. International Journal of Mathematical Models and Methods in Applied Sciences, vol. 5, no. 7, pp. 1225–1232, 2011.Google Scholar
  14. [14]
    I. Ahmed, H. Wong, V. Kapila. Internet-based remote control using a microcontroller and an embedded Ethernet. In Proceedings of the American Control Conference, IEEE, Boston, MA, USA, vol. 2, pp. 1329–1334, 2004.Google Scholar
  15. [15]
    K. Muller, T. Steinbach, F. Korf, T. C. Schmidt. A realtime Ethernet prototype platform for automotive applications. In Proceedings of IEEE International Conference on Consumer Electronics, IEEE, Berlin, Germany, pp. 221–225, 2011.Google Scholar
  16. [16]
    LPY530AL MEMS motion sensor: dual axis pitch and yaw 300?/s analog gyroscope. STMicroelectronics, Doc ID 15807 Rev 2, July 2009.Google Scholar
  17. [17]
    ADXL335: Small, Low Power, 3-Axis3 g Accelerometer. Analog Devices, Rev. A, 2009.Google Scholar
  18. [18]
    B. V. NXP (founded by Philips). UM10360 CLPC17xx User Manual, Rev. 2C, 19 August 2010.Google Scholar
  19. [19]
    DP83848C PHYTER-Commercial Temperature Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver, National Semiconductor, May 2008.Google Scholar
  20. [20]
    Compex Systems. PS2208-Product Datasheet, 2006.Google Scholar
  21. [21]
    G. Welch, G. Bishop. An Introduction to the Kalman Filter, TR-95-041, Department of Computer Science, University of North Carolina at Chapell Hill, USA 2002.Google Scholar
  22. [22]
    M. Haid, J. Breitenbach. Low cost inertial orientation tracking with Kalman filter. Applied Mathematics and Computation, vol. 153, no. 2, pp. 567–575, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    K. H. Yang, W. S. Yu, X. Q. Ji. Rotation estimation for mobile robot based on single-axis gyroscope and monocular camera. International Journal of Automation and Computing, vol. 9, no. 3, pp. 292–298, 2012.CrossRefGoogle Scholar
  24. [24]
    K. A. Venkatesh, N. Mathivanan. Design of MEMS accelerometer based acceleration measurement system for automobiles. Measurement Science Review, vol. 12, no. 5, pp. 189–194, 2012.CrossRefGoogle Scholar
  25. [25]
    K. A. Venkatesh, N. Mathivanan. CAN network based longitudinal velocity measurement using accelerometer and GPS receiver for automobiles. Measurement Science Review, vol. 13, no. 3, pp. 115–121, 2013.CrossRefGoogle Scholar
  26. [26]
    W. T. Higgins. A comparison of complementary and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 3, pp. 321–325, 1975.CrossRefGoogle Scholar
  27. [27]
    S. Colton, F. R. C. Mentor. The balance filter. Presentation, Massachusetts Institute of Technology, 2007.Google Scholar
  28. [28]
    SiRF Technology Inc. NMEA Reference Manual, Rev. 1. 3 January 2005.Google Scholar
  29. [29]
    Cyber i-Technologies Co., Ltd. GPS-634R Technical Data Sheet, Ver. 1. 4, 2010.Google Scholar
  30. [30]
    S. Biaz, N. H. Vaidya. Is the round-trip time correlated with the number of packets in flight? In Proceedings of IMC03, Miami Beach, Florida, USA, 2003.CrossRefGoogle Scholar
  31. [31]
    A. Dannenberg. SLAA137A CMSP430 Internet Connectivity. TexasInstrumentApplicationReport. Rev-A. February 2004.Google Scholar
  32. [32]
    S. Shon. Protocol implementations for web based control systems. International Journal of Control, Automation, and Systems, vol. 3, no. 1, pp. 122–129, 2005.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University Science Instrumentation CentreMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations