Advertisement

Distributed control of chemical process networks

  • Michael J. Tippett
  • Jie Bao
Survey Paper

Abstract

In this paper, we present a review of the current literature on distributed (or partially decentralized) control of chemical process networks. In particular, we focus on recent developments in distributed model predictive control, in the context of the specific challenges faced in the control of chemical process networks. The paper is concluded with some open problems and some possible future research directions in the area.

Keywords

Distributed process control chemical process systems process networks plantwide control distributed model predictive control 

References

  1. [1]
    A. M. Lenhoff, M. Morari. Design of resilient processing plants-I. Process design under consideration of dynamic aspects. Chemical Engineering Science, vol. 37, no. 2, pp. 245–258, 1982.Google Scholar
  2. [2]
    P. A. Bahri, J. A. Bandoni, J. A. Romagnoli. Integrated flexibility and controllability analysis in design of chemical processes. American Institute of Chemical Engineers Journal, vol. 43, no. 4, pp. 997–1015, 1997.CrossRefGoogle Scholar
  3. [3]
    J. D. Perkins, S. P. K. Walsh. Optimization as a tool for design/control integration. Computers and Chemical Engineering, vol. 20, no. 4, pp. 315–323, 1996.CrossRefGoogle Scholar
  4. [4]
    A. Kumar, P. Daoutidis. Nonlinear dynamics and control of process systems with recycle. Journal of Process Control, vol. 12, no. 4, pp. 475–484, 2002.CrossRefGoogle Scholar
  5. [5]
    P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, J. F. Liu. Distributed model predictive control: A tutorial review and future research directions. Computers and Chemical Engineering, vol. 51, pp. 21–41, 2013.CrossRefGoogle Scholar
  6. [6]
    S. Skogestad, M. Morari. Robust performance of decentralized control systems. Automatica, vol. 25, no. 1, pp. 119–125, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A. Swarnakar, H. J. Marquez, T. W. Chen. Multi-loop control synthesis for unstable systems and its application: An approach based on μ interaction measure. International Journal of Robust and Nonlinear Control, vol. 19, no. 15, pp. 1721–1744, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S. Skogestad. Control structure design for complete chemical plants. Computers and Chemical Engineering, vol. 28, no. 1–2, pp. 219–234, 2004.CrossRefGoogle Scholar
  9. [9]
    Y. Ho. On centralized optimal control. IEEE Transactions on Automatic Control, vol. 50, no. 4, pp. 537–538, 2005.MathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Larsson, S. Skogestad. Plantwide control-a review and a new design procedure. Modeling, Identification and Control, vol. 21, no. 4, pp. 209–240, 2000.CrossRefGoogle Scholar
  11. [11]
    J. F. Liu, X. Z. Chen, D. Muñoz de la Peña, P. D. Christofides. Sequential and iterative architectures for distributed model predictive control of nonlinear process systems. American Institute of Chemical Engineers Journal, vol. 56, no. 8, pp. 2137–2149, 2010.Google Scholar
  12. [12]
    R. Scattolini. Architectures for distributed and hierarchical model predictive control-a review. Journal of Process Control, vol. 19, no. 5, pp. 723–731, 2009.CrossRefGoogle Scholar
  13. [13]
    W. L. Luyben, B. D. Tyréus, M. L. Luyben. Plantwide Process Control, New York, USA: McGraw-Hill, 1998.Google Scholar
  14. [14]
    D. Hioe, J. Bao, B. E. Ydstie. Dissipativity analysis for networks of process systems. Computers and Chemical Engineering, vol. 50, pp. 207–219, 2013.CrossRefGoogle Scholar
  15. [15]
    W. L. Luyben. Snowball effects in reactor separator processes with recycle. Industrial & Engineering Chemistry Research, vol. 33, no. 2, pp. 299–305, 1994.CrossRefGoogle Scholar
  16. [16]
    S. Skogestad. Plantwide control: The search for the selfoptimizing control structure. Journal of Process Control, vol. 10, no. 5, pp. 487–507, 2000.CrossRefGoogle Scholar
  17. [17]
    Y. Cao, Z. J. Yang. Multiobjective process controllability analysis. Computers and Chemical Engineering, vol. 28, no. 1–2, pp. 83–90, 2004.CrossRefGoogle Scholar
  18. [18]
    Y. Cao. Direct and indirect gradient control for static optimisation. International Journal of Automation and Computing, vol. 2, no. 1, pp. 60–66, 2006.CrossRefGoogle Scholar
  19. [19]
    R. D’Andrea, G. E. Dullerud. Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1478–1495, 2003.MathSciNetCrossRefGoogle Scholar
  20. [20]
    N. Hudon, J. Bao. Dissipativity-based decentralized control of interconnected nonlinear chemical processes. Computers and Chemical Engineering, vol. 45, pp. 84–101, 2012.CrossRefGoogle Scholar
  21. [21]
    B. T. Stewart, S. J. Wright, J. B. Rawlings. Cooperative distributed model predictive control for nonlinear systems. Journal of Process Control, vol. 21, no. 5, pp. 698–704, 2011.CrossRefGoogle Scholar
  22. [22]
    C. Langbort, V. Gupta. Minimal interconnection topology in distributed control design. SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 397–413, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    C. Peng, Y. C. Tian, M. Tadé. State feedback controller design of networked control systems with interval time-varying delay and nonlinearity. International Journal of Robust and Nonlinear Control, vol. 18, no. 12, pp. 1285–1301, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    J. F. Liu, D. Muñoz de la Peña, B. J. Ohran, P. D. Christofides, J. F. Davis. A two-tier architecture for networked process control. Chemical Engineering Science, vol. 63, no. 22, pp. 5394–5409, 2008.zbMATHCrossRefGoogle Scholar
  25. [25]
    L. Acar. Boundaries of the receding horizon control for interconnected systems. Journal of Optimization Theory and Applications, vol. 84, no. 2, pp. 251–271, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    P. D. Christofides, J. F. Liu, D. Muñoz de la Peña. Networked and Distributed Predictive Control: Methods and Nonlinear Process Network Applications, New York, USA: Springer, 2011.zbMATHCrossRefGoogle Scholar
  27. [27]
    M. Farina, R. Scattolini. Distributed noncooperative MPC with neighbor-to-neighbor communication. In Proceedings of the 18th IFAC World Congress, IFAC, Milano, Italy, pp. 404–409, 2011.Google Scholar
  28. [28]
    M. Farina, R. Scattolini. Distributed predictive control: A non-cooperative algorithm with neighbor-to-neighbor communication for linear systems. Automatica, vol. 48, no. 6, pp. 1088–1096, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    G. Betti, M. Farina, R. Scattolini. Realization issues, tuning, and testing of a distributed predictive control algorithm. Journal of Process Control, vol. 24, no. 4, pp. 424–434, 2014.CrossRefGoogle Scholar
  30. [30]
    W. B. Dunbar. Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1249–1263, 2007.MathSciNetCrossRefGoogle Scholar
  31. [31]
    W. B. Dunbar, S. Desa. Distributed nonlinear model predictive control for dynamic supply chain management. In Proceedings of the International Workshop on Assessment and Future Directions on NMPC, Freudenstadt-Lauterbad, Germany, 2005.Google Scholar
  32. [32]
    G. Y. Zhu, M. A. Henson. Model predictive control of interconnected linear and nonlinear processes. Industrial & Engineering Chemistry Research, vol. 41, no. 4, pp. 801–816, 2002.CrossRefGoogle Scholar
  33. [33]
    P. Mhaskar, N. H. El-Farra, P. D. Christofides. Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1670–1680, 2005.MathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Mhaskar, N. H. El-Farra, P. D. Christofides. Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Systems & Control Letters, vol. 55, no. 8, pp. 650–659, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    M. Ellis, M. Heidarinejad, P. D. Christofides. Economic model predictive control of nonlinear two-time-scale systems. In Proceedings of the 21st Mediterranean Conference on Control and Automation, IEEE, Platanias-Chania, Crete, Greece, pp. 323–328, 2013.CrossRefGoogle Scholar
  36. [36]
    M. Ellis, J. Zhang, J. F. Liu, P. D. Christofides. Robust moving horizon estimation based output feedback economic model predictive control. System & Control Letters, vol. 68, pp. 101–109, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    J. Zhang, S. Liu, J. F. Liu. Economic model predictive control with triggered evaluations: State and output feedback. Journal of Process Control, vol. 24, no. 8, pp. 1197–1206, 2014.CrossRefGoogle Scholar
  38. [38]
    Y. J. Wang, J. B. Rawlings. A new robust model predictive control method I: Theory and computation. Journal of Process Control, vol. 14, no. 3, pp. 231–247, 2004.CrossRefGoogle Scholar
  39. [39]
    P. O. M. Scokaert, D. Q. Mayne. Min-max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control, vol. 43, no. 8, pp. 1136–1142, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    H. Genceli, M. Nikolaou. Robust stability analysis of constrained l1-norm model predictive control. American Institute of Chemical Engineers Journal, vol. 39, no. 12, pp. 1954–1965, 1993.MathSciNetCrossRefGoogle Scholar
  41. [41]
    D. Jia, B. H. Krogh. Min-max feedback model predictive control for distributed control with communication. In Proceedings of the American Control Conference, IEEE, Anchorage, USA, pp. 4507–4512, 2002.Google Scholar
  42. [42]
    A. Richards, J. P. How. Robust distributed model predictive control. International Journal of Control, vol. 80, no. 9, pp. 1517–1531, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert. Constrained predictive control: Stability and optimality. Automatica, vol. 36, no. 6, pp. 789–814, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    M. J. Tippett, J. Bao. Plant-wide dissipative model predictive control. AIChE Journal, vol. 59, no. 3 pp. 787–804, 2013.CrossRefGoogle Scholar
  45. [45]
    M. J. Tippett, J. Bao. A unified approach to plant-wide dissipative model predictive control. In Proceedings of the International Symposium on Advanced Control of Chemical Processes, IFAC, Singapore, pp. 420–425, 2012.Google Scholar
  46. [46]
    T. Raff, C. Ebenbauer, P. Allgöwer. Nonlinear model predictive control: A passivity-based approach. In Proceedings of the International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, Freudenstadt-Lauterbad, Germany, pp. 151–162, 2005.Google Scholar
  47. [47]
    M. J. Tippett, J. Bao. Distributed dissipative model predictive control for process networks with imperfect communication. AIChE Journal, vol. 60, no. 5, pp. 1682–1699, 2014.CrossRefGoogle Scholar
  48. [48]
    C. X. Zheng, M. J. Tippett, J. Bao, J. F. Liu. Multirate dissipativity-based distributed MPC. In Proceedings of the 3rd Australian Control Conference, IEEE, Perth, Australia, pp. 325–330, 2013.Google Scholar
  49. [49]
    C. Kojima, K. Takaba. A generalized Lyapunov stability theorem for discrete-time systems based on quadratic difference forms. In Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, IEEE, Seville, Spain, pp. 2911–2916, 2005.CrossRefGoogle Scholar
  50. [50]
    C. Kojima, K. Takaba. An LMI condition for asymptotic stability of discrete-time system based on quadratic difference forms. In Proceedings of IEEE Conference on Computer Aided Control Systems Design, IEEE, Munich, Germany, pp. 1139–1143, 2006.Google Scholar
  51. [51]
    J. B. Rawlings, B. T. Stewart. Coordinating multiple optimization-based controllers: New opportunities and challenges. Journal of Process Control, vol. 18, no. 9, pp. 839–845, 2008.CrossRefGoogle Scholar
  52. [52]
    B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, G. Pannocchia. Cooperative distributed model predictive control. Systems & Control Letters, vol. 59, no. 8, pp. 460–469, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    A. N. Venkat, J. B. Rawlings, S. J. Wright. Stability and optimality of distributed model predictive control. In Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, IEEE, Seville, Spain, pp. 6680–6685, 2005.CrossRefGoogle Scholar
  54. [54]
    A. N. Venkat, J. B. Rawlings, S. J. Wright. Implementable distributed model predictive control with guaranteed performance properties. In Proceedings of the American Control Conference, IEEE, Minneapolis, USA, 2006.Google Scholar
  55. [55]
    P. O. M. Scokaert, D. Q. Mayne, J. B. Rawlings. Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, vol. 44, no. 3, pp. 648–654, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    A. Ferramosca, D. Limon, I. Alvarado, E. F. Camacho. Cooperative distributed MPC for tracking. Automatica, vol. 49, no. 4, pp. 906–914, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    H. Scheu, J. Busch, W. Marquardt. Nonlinear distributed dynamic optimization based on first order sensitivities. In Proceedings of the American Control Conference, IEEE, Baltimore, USA, pp. 1574–1579, 2010.Google Scholar
  58. [58]
    H. Scheu, W. Marquardt. Sensitivity-based coordination in distributed model predictive control. Journal of Process Control, vol. 21, no. 5, pp. 715–728, 2011.CrossRefGoogle Scholar
  59. [59]
    J. M. Maestre, D. Muñoz de la Peña, E. F. Camacho. Distributed model predictive control based on a cooperative game. Optimal Control Applications and Methods, vol. 32, no. 2, pp. 153–176, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    J. M. Maestre, D. Muñoz de la Pena, E. F. Camacho, T. Alamo. Distributed model predictive control based on agent negotiation. Journal of Process Control, vol. 21, no. 5, pp. 685–697, 2011.CrossRefGoogle Scholar
  61. [61]
    J. F. Liu, D. Muñoz de la Peña, P. D. Christofides. Distributed model predictive control of nonlinear process systems. American Institute of Chemical Engineers Journal, vol. 55, no. 5, pp. 1171–1184, 2009.CrossRefGoogle Scholar
  62. [62]
    J. F. Liu, D. Muñoz de la Peña, P. D. Christofides. Distributed model predictive control of nonlinear systems subject to asynchronous and delayed measurements. Automatica, vol. 46, no. 1, pp. 52–61, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    M. Heidarinejad, J. F. Liu, D. Muñoz de la Pena, J. F. Davis, P. D. Christofides. Multirate Lyapunovbased distributed model predictive control of nonlinear uncertain systems. Journal of Process Control, vol. 21, no. 9, pp. 1231–1242, 2011.CrossRefGoogle Scholar
  64. [64]
    X. Z. Chen, M. Heidarinejad, J. F. Liu, D. Muñoz de la Peña, P. D. Christofides. Model predictive control of nonlinear singularly perturbed systems: Application to a largescale process network. Journal of Process Control, vol. 21, no. 9, pp. 1296–1305, 2011.CrossRefGoogle Scholar
  65. [65]
    M. Heidarinejad, J. F. Liu, D. Muñoz de la Pena, J. F. Davis, P. D. Christofides. Handling communication disruptions in distributed model predictive control. Journal of Process Control, vol. 21, no. 1, pp. 173–181, 2011.CrossRefGoogle Scholar
  66. [66]
    X. Z. Chen, M. Heidarinejad, J. F. Liu, P. D. Christofides. Distributed economic MPC: Application to a nonlinear chemical process network. Journal of Process Control, vol. 22, no. 4, pp. 689–699, 2012.CrossRefGoogle Scholar
  67. [67]
    R. M. Hermans, A. Jokić, M. Lazar, A. Alessio, P. P. J. van den Bosch, I. A. Hiskens, A. Bemporad. Assessment of non-centralised model predictive control techniques for electrical power networks. International Journal of Control, vol. 85, no. 8, pp. 1162–1177, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    E. Camponogara, H. F. Scherer. Distributed optimization for model predictive control of linear dynamic networks with Controlinput and output constraints. IEEE Transactions on Automation Science and Engineering, vol. 8, no. 1, pp. 233–242, 2011.CrossRefGoogle Scholar
  69. [69]
    I. Necoara, V. Nedelcu, I. Dumitrache. Parallel and distributed optimization methods for estimation and control in networks. Journal of Process Control, vol. 21, no. 5, pp. 756–766, 2011.CrossRefGoogle Scholar
  70. [70]
    Y. Zheng, S. Y. Li, N. Li. Distributed model predictive control over network information exchange for large-scale systems. Control Engineering Practice, vol. 19, no. 7, pp. 757–769, 2011.CrossRefGoogle Scholar
  71. [71]
    X. Cai, M. J. Tippett, L. Xie, J. Bao. Fast distributed MPC based on active set method. Computers and Chemical Engineering, vol. 71, pp. 158–170, 2014.CrossRefGoogle Scholar
  72. [72]
    P. Giselsson, M. D. Doan, T. Keviczky, B. de Schutter, A. Rantzer. Accelerated gradient methods and dual decomposition in distributed model predictive control. Automatica, vol. 49, no. 3, pp. 829–833, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    I. Necoara, D. Doan, J. A. K. Suykens. Application of the proximal center decomposition method to distributed model predictive control. In Proceedings of the 47th IEEE conference on Decision and Control, IEEE, Cancun, Mexico, pp. 2900–2905, 2008.Google Scholar
  74. [74]
    S. D. Cairano, M. Brand, S. A. Bortoff. Projection-free parallel quadratic programming for linear model predictive control. International Journal of Control, vol. 86, no. 8, pp. 1367–1385, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, vol. 38, no. 1, pp. 3–20, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    T. A. Johansson, I. Petersen, O. Slupphaug. Explicit Suboptimal linear quadratic regulation with state and input constraints. Automatica, vol. 38, no. 7, pp. 1099–1111, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  77. [77]
    J. C. Willems. Dissipative dynamical systems, Part I: General theory. Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321–351, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    J. C. Willems. Dissipative dynamical systems, Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 352–393, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  79. [79]
    D. J. Hill, P. Moylan. The stability of nonlinear dissipative systems. IEEE Transactions on Automatic Control, vol. 21, no. 5, pp. 708–711, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    D. J. Hill, P. J. Moylan. Stability results for nonlinear feedback systems. Automatica, vol. 13, no. 4, pp. 377–382, 1977.zbMATHCrossRefGoogle Scholar
  81. [81]
    P. J. Moylan, D. J. Hill. Stability criteria for large-scale systems. IEEE Transactions on Automatic Control, vol. 23, no. 2 pp. 143–149, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    A. A. Alonso, B. E. Ydstie. Process systems, passivity and the second law of thermodynamics. Computers and Chemical Engineering, vol. 20, no. 2, pp. 1119–1124, 1996.CrossRefGoogle Scholar
  83. [83]
    A. A. Alonso, B. E. Ydstie. Stabilization of distributed systems using irreversible thermodynamics. Automatica, vol. 37, no. 11, pp. 1739–1755, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    K. M. Hangos, A. A. Alonso, J. D. Perkins, B. E. Ydstie. Thermodynamic approach to the structural stability of process plants. American Institute of Chemical Engineers Journal, vol. 45, no. 4, pp. 802–816, 1999.CrossRefGoogle Scholar
  85. [85]
    A. A. Alonso, C. V. Fernandez, J. R. Banga. Dissipative systems: From physics to robust 2nonlinear control. International Journal of Robust and Nonlinear Control, vol. 14, no. 2, pp. 157–179, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    M. Baldea, N. H. El-Farra, B. E. Ydstie. Dynamics and control of chemical process networks: Integrating physics, communication and computation. Computers and Chemical Engineering, vol. 51, pp. 42–54, 2013.CrossRefGoogle Scholar
  87. [87]
    B. E. Ydstie, A. A. Alonso. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters, vol. 30, no. 5, pp. 253–264, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    K. R. Jillson, B. E. Ydstie. Process networks with decentralized inventory and flow control. Journal of Process Control, vol. 17, no. 5, pp. 399–413, 2007.CrossRefGoogle Scholar
  89. [89]
    R. Setiawan, J. Bao. Analysis of interaction effects on plantwide operability. Industrial & Engineering Chemistry Research, vol. 50, no. 14, pp. 8585–8602, 2011.CrossRefGoogle Scholar
  90. [90]
    R. Setiawan, J. Bao. Plantwide operability assessment for nonlinear processes using a microscopic level network analysis. Chemical Engineering Research and Design, vol. 90, no. 1, pp. 119–128, 2012.CrossRefGoogle Scholar
  91. [91]
    O. J. Rojas, R. Setiawan, J. Bao, P. L. Lee. Dynamic operability analysis of nonlinear process networks based on dissipativity. AIChE Journal, vol. 55, no. 4, pp. 963–982, 2009.CrossRefGoogle Scholar
  92. [92]
    G. Scorletti, G. Duc. A convex approach to decentralized H8 control. In Proceedings of the American Control Conference, IEEE, Albuquerque, New Mexico, pp. 2390–2394, 1997.Google Scholar
  93. [93]
    G. Scorletti, G. Duc. An LMI approach to decentralized H8 control. International Journal of Control, vol. 74, no. 3 pp. 211–224, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    S. C. Xu, J. Bao. Distributed control of plantwide chemical processes. Journal of Process Control, vol. 19, no. 10, pp. 1671–1687, 2009.CrossRefGoogle Scholar
  95. [95]
    S. C. Xu, J. Bao. Control of chemical processes via output feedback controller networks. Industrial & Engineering Chemistry Research, vol. 49, no. 16, pp. 7421–7445, 2010.CrossRefGoogle Scholar
  96. [96]
    M. J. Tippett, J. Bao. Control of plant-wide systems using dynamic supply rates. Automatica, vol. 50, no. 1, pp. 44–52, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    M. J. Tippett, J. Bao. Dissipativity based distributed control synthesis. Journal of Process Control, vol. 23, no. 5, pp. 755–766, 2013.CrossRefGoogle Scholar
  98. [98]
    C. Langbort, R. S. Chandra, R. D’Andrea. Distributed control design for systems interconnected over an arbitrary graph. IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1502–1519, 2004.MathSciNetCrossRefGoogle Scholar
  99. [99]
    C. Schizas, F. J. Evans. A graph theoretic approach to multivariable control system design. Automatica, vol. 17, no. 2, pp. 371–377, 1981.zbMATHCrossRefGoogle Scholar
  100. [100]
    M. Vidyasagar. Input-output Analysis of Large-scale Interconnected Systems, Berlin, Grermany: Springer-Verlag, 1981.zbMATHCrossRefGoogle Scholar
  101. [101]
    C. Langbort, V. Gupta. Minimal interconnection topology in distributed control design. In Proceedings of the American Control Conference, IEEE, Minnepolis, USA, pp. 845–850, 2006.Google Scholar
  102. [102]
    K. M. Hangos, Z. Tuza. Optimal control structure selection for process systems. Computers & Chemical Engineering, vol. 25, no. 11–12, pp. 1521–1536, 2001.CrossRefGoogle Scholar
  103. [103]
    P. Lin, Y. M. Jia, L. Li. Distributed robust H8 consensus control in directed networks of agents with time-delay. Systems & Control Letters, vol. 57, no. 8, pp. 643–653, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  104. [104]
    R. Vadigepalli, F. J. Doyle. A distributed state estimation and control algorithm for plantwide processes. IEEE Transactions on Control Systems Technology, vol. 11, no. 1, pp. 119–127, 2003.CrossRefGoogle Scholar
  105. [105]
    R. Vadigepalli, F. J. Doyle. Structural analysis of largescale systems for distributed state estimation and control applications. Control Engineering Practice, vol. 11, no. 8, pp. 895–905, 2003.CrossRefGoogle Scholar
  106. [106]
    N. Abdel-Jabbar, C. Kravaris, B. Carnahan. A partially decentralized state observer and its parallel computer implementation. Industrial & Engineering Chemistry Research, vol. 37, no. 7, pp. 2741–2760, 1998.CrossRefGoogle Scholar
  107. [107]
    D. R. Ding, Z. D.Wang, H. L. Dong, H. S. Shu. Distributed H1 state estimation with stochastic parameters and nonlinearities through sensor networks: The finite horizon case. Automatica, vol. 48, no. 8, pp. 1575–1585, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  108. [108]
    V. Ugrinovskii, E. Fridman. A round-robin type protocol for distributed estimation with H8 consensus. Systems & Control Letters, vol. 69, pp. 103–110, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    P. Millán, L. Orihuela, C. Vivas, F. R. Rubio. Distributed consensus-based estimation considering network induced delays and dropouts. Automatica, vol. 48, no. 10, pp. 2726–2729, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  110. [110]
    E. L. Haseltine, J. B. Rawlings. Critical evaluation of extended kalman filtering and moving-horizon estimation. Industrial & Engineering Chemistry Research, vol. 44, no. 8, pp. 2451–2460, 2005.CrossRefGoogle Scholar
  111. [111]
    C. V. Rao, J. B. Rawlings, J. H. Lee. Constrained linear state estimation-a moving horizon approach. Automatica, vol. 37, no. 10, pp. 1619–1628, 2001.zbMATHCrossRefGoogle Scholar
  112. [112]
    C. V. Rao, J. B. Rawlings, D. Q. Mayne. Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations. IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 246–258, 2003.MathSciNetCrossRefGoogle Scholar
  113. [113]
    J. Busch, D. Elixmann, P. Kühl, C. Gerkens, J. P. Schoder, H. G. Bock, W. Marquardt. State estimation for largescale wastewater treatment plants. Water Research, vol. 47, no. 13, pp. 4774–4787, 2013.CrossRefGoogle Scholar
  114. [114]
    J. F. Liu. Moving horizon state estimation for nonlinear systems with bounded uncertainties. Chemical Engineering Science, vol. 93, pp. 376–386, 2013.CrossRefGoogle Scholar
  115. [115]
    J. Zhang, J. F. Liu. Observer-enhanced distributed moving horizon state estimation subject to communication delays. Journal of Process Control, vol. 24, no. 5, pp. 672–686, 2014.CrossRefGoogle Scholar
  116. [116]
    J. Zhang, J. F. Liu. Two triggered information transmission algorithms for distributed moving horizon state estimation. Systems & Control Letters, vol. 65, pp. 1–12, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  117. [117]
    M. Farina, G. Ferrari-Trecate, R. Scattolini. Distributed moving horizon estimation for linear constrained systems. IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2462–2475, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  118. [118]
    M. Farina, G. Ferrari-Trecate, R. Scattolini. Movinghorizon partition-based state estimation of large-scale systems. Automatica, vol. 46, no. 5, pp. 910–918, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  119. [119]
    M. Farina, G. Ferrari-Trecate, C. Romani, R. Scattolini. Moving horizon estimation for distributed nonlinear systems with application to cascade river reaches. Journal of Process Control, vol. 21, no. 5, pp. 767–774, 2011.CrossRefGoogle Scholar
  120. [120]
    M. Farina, G. Ferrari-Trecate, R. Scattolini. Distributed moving horizon estimation for nonlinear constrained systems. International Journal of Robust and Nonlinear Control, vol. 22, no. 2, pp. 123–143, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  121. [121]
    N. Shah. Process industry supply chains: Advances and challenges. Computers & Chemical Engineering, vol. 29, no. 6, pp. 1225–1235, 2005.CrossRefGoogle Scholar
  122. [122]
    N. N. Chokshi, D. C. Mc-Farlane. A Distributed Coordination Approach to Reconfigurable Process Control, London: Springer-Verlag, 2008.Google Scholar
  123. [123]
    G. E. Keller, P. F. Bryan. Process engineering: Moving in new directions. Chemical Engineering Progress, vol. 96, no. 1, pp. 41–50, 2000.Google Scholar
  124. [124]
    T. Wauters, K. Verbeeck, P. Verstraete, G. Vanden Berghe, P. De Causmaecker. Real-world production scheduling for the food industry: An integrated approach. Engineering Applications of Artificial Intelligence, vol. 25, no. 2, pp. 222–228, 2012.CrossRefGoogle Scholar
  125. [125]
    E. Chaćon, I. Besembel, J. C. Hennet. Coordination and optimization in oil and gas production complexes. Computers in Industry, vol. 53, no. 1, pp. 17–37, 2004.CrossRefGoogle Scholar
  126. [126]
    S. Salomons, R. E. Hayes, M. Poirier, H. Sapoundjiev. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions. Computers & Chemical Engineering, vol. 28, no. 9, pp. 1599–1610, 2004.CrossRefGoogle Scholar
  127. [127]
    N. Chokshi, D. C. McFarlane. A distributed architecture for reconfigurable control of continuous process operations. Journal of Intelligent Manufacturing, vol. 19, no. 2, pp. 215–232, 2008.CrossRefGoogle Scholar
  128. [128]
    M. J. Tippett, J. Bao. Reconfigurable distributed model predictive control. Chemical Engineering Science, [Online], Available: http://dx.doi.org/10.1016/j.ces.2015.01.040, 2015.Google Scholar
  129. [129]
    P. Christofides, J. Davis, N. H. El-Farra, D. Clark, H. K., K. R. D. Harris, J. N. Gipson. Smart plant operations: Vision, progress and challenges. American Institute of Chemical Engineers Journal, vol. 53, no. 11, pp. 2734–2741, 2007.CrossRefGoogle Scholar
  130. [130]
    B. Erik-Ydstie. New vistas for process control: Integrating physics and communication networks. AIChE Journal, vol. 48, no. 3, pp. 422–426, 2002.CrossRefGoogle Scholar
  131. [131]
    D. Angeli, R. Amrit, J. B. Rawlings. On average performance and stability of economic model predictive control. IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1615–1626, 2012.MathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations