Advertisement

Self-contained capsubot propulsion mechanism

  • M. Nazmul HudaEmail author
  • Hong-Nian Yu
  • Samuel Oliver Wane
Article

Abstract

In this paper, a self contained capsubot (capsule robot) propulsion mechanism is investigated. The proposed capsubot works on the principle of internal force-static friction. A modified linear DC motor is used to drive the capsubot. A novel acceleration profile is proposed for the moving part (linear cylinder) based on the principle. A significant feature of the proposed capsubot is that it is legless, wheelless, and trackless. The developed capsubot with a proposed propulsion mechanism demonstrates a very good average velocity. The propulsion mechanism has the potential to be used for the propulsion of a wireless-controlled self-propelling capsule endoscope. Simulation and experimental results demonstrate the performance of the self-contained capsubot with the proposed acceleration profile.

Keywords

Capsubot internal force and static friction linear DC motor propulsion capsule endoscopy 

References

  1. [1]
    Y. Kusuda. A further step beyond wireless capsule endoscopy. Sensor Review, vol. 25, no. 4, pp. 259–260, 2005.CrossRefGoogle Scholar
  2. [2]
    G. Iddan, G. Meron, A. Glukhovsky, P. Swain. Wireless capsule endoscopy. Nature, vol. 405, no. 6785, pp. 417, 2000.CrossRefGoogle Scholar
  3. [3]
    A. Moglia, A. Menciassi, P. Dario, A. Cuschieri. Capsule endoscopy: Progress update and challenges ahead. Nature Reviews Gastroenterology and Hepatology, vol. 6, no. 6, pp. 353–361, 2009.CrossRefGoogle Scholar
  4. [4]
    S. Park, J. Park, H. Park, S. Park, C. Jee, S. Park, B. Kim. Multi-functional capsule endoscope for gastrointestinal tract. In Proceedings of SICE-ICASE International Joint Conference, IEEE, Busan, Korea, pp. 2090–2093, 2006.CrossRefGoogle Scholar
  5. [5]
    B. Kim, S. Park, J. Park. Microrobots for a capsule endoscope. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, pp. 729–734, 2009.Google Scholar
  6. [6]
    H. Park, S. Park, E. Yoon, B. Kim, J. Park, S. Park. Paddling based microrobot for capsule endoscopes. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, pp. 3377–3382, 2007.Google Scholar
  7. [7]
    H. Y. Li, K. Furuta, F. L. Chernousko. Motion generation of the capsubot using internal force and static friction. In Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, pp. 6575–6580, 2006.Google Scholar
  8. [8]
    G. Kosa, P. Jakab, F. Jolesz, N. Hata. Swimming capsule endoscope using static and RF magnetic field of MRI for propulsion. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, pp. 2922–2927, 2008.Google Scholar
  9. [9]
    M. E. Rentschler, J. Dumpert, S. R. Platt, K. Lagnernma, D. Oleynikov, S. M. Farritor. Modeling, analysis, and experimental study of in vivo wheeled robotic mobility. IEEE Transactions on Robotics, vol. 22, no. 2, pp. 308–321, 2006.CrossRefGoogle Scholar
  10. [10]
    Y. Liu, M. Hasan, H. Yu. Modelling and remote control of an excavator. International Journal of Automation and Computing, vol. 7, no. 3, pp. 349–358, 2010.CrossRefGoogle Scholar
  11. [11]
    S. Gorini, M. Quirini, A. Menciassi, G. Pernorio, C. Stefanini, P. Dario. A novel SMA-based actuator for a legged endoscopic capsule. In Proceedings of the 1st IEEE/RASEMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, Pisa, Italy, pp. 443–449, 2006.CrossRefGoogle Scholar
  12. [12]
    J. Suthakorn, S. Shah, S. Jantarajit, W. Onprasert, W. Saensupo, S. Saeung, S. Nakdhamabhorn, V. Sa-Ing, S. Reaungamornrat. On the design and development of a rough terrain robot for rescue missions. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Bangkok, Thailand, pp. 1830–1835, 2009.CrossRefGoogle Scholar
  13. [13]
    Y. H. Zweiri. Identification schemes for unmanned excavator arm parameters. International Journal of Automation and Computing, vol. 5, no. 2, pp. 185–192, 2008.CrossRefGoogle Scholar
  14. [14]
    M. Eich, F. Grimminger, F. Kirchner. Proprioceptive control of a hybrid legged-wheeled robot. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Bangkok, Thailand, pp. 774–779, 2009.CrossRefGoogle Scholar
  15. [15]
    M. Simi, P. Valdastri, C. Quaglia, A. Menciassi, P. Dario. Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration. IEEE/ASME Transactions on Mechatronics, vol. 15, no. 2, pp. 170–180, 2010.CrossRefGoogle Scholar
  16. [16]
    M. Suzuki, S. Kitai, S. Hirose. Basic systematic experiments and new type child unit of anchor climber: Swarm type wall climbing robot system. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Pasadena, USA, pp. 3034–3039, 2008.Google Scholar
  17. [17]
    P. Glass, E. Cheung, M. Sitti. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Transactions on Biomedical Engineering, vol. 55, no. 12, pp. 2759–2767, 2008.CrossRefGoogle Scholar
  18. [18]
    P. Glass, E. Cheung, H. Wang, R. Appasamy, M. Sitti. A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus. In Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, pp. 758–764, 2008.Google Scholar
  19. [19]
    M. Quirini, S. Scapellato, P. Valdastri, A. Menciassi, P. Dario. An approach to capsular endoscopy with active motion. In Proceedings of the 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society, IEEE, Lyon, France, pp. 2827–2830, 2007.CrossRefGoogle Scholar
  20. [20]
    A. Menciassi, P. Valdastri, C. Quaglia, E. Buselli, P. Dario. Wireless steering mechanism with magnetic actuation for an endoscopic capsule. In Proceedings of Annual International Conference of IEEE Engineering in Medicine and Biology Society, IEEE, Minneapolis, USA, pp. 1204–1207, 2009.CrossRefGoogle Scholar
  21. [21]
    F. Carpi, C. Pappone. Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system. IEEE Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1482–1490, 2009.CrossRefGoogle Scholar
  22. [22]
    M. Nokata, S. Kitamura, T. Nakagi, T. Inubushi, S. Morikawa. Capsule type medical robot with magnetic drive in abdominal cavity. In Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, pp. 348–353, 2009.Google Scholar
  23. [23]
    H. Yu, Y. Liu, T. Yang. Closed-loop tracking control of a pendulum-driven cart-pole underactuated system. Journal of Systems and Control Engineering, vol. 222, no. 2, pp. 109–125, 2008.Google Scholar
  24. [24]
    Y. Liu, H. Yu, T. Yang. Analysis and control of a capsubot. In Proceedings of the 17th IFAC World Congress, IFAC, Korea, vol. 17, pp. 756–761, 2008.Google Scholar
  25. [25]
    M. N. Huda. Analysis and Control of Propulsion Systems to be Integrated with Wireless Capsule Endoscopy, Master dissertation, Faculty of Computing, Engineering and Technology, Staffordshire University, UK, 2010.Google Scholar
  26. [26]
    FAULHABER, [Online], Available: http://www.faulhabergroup.com/, June 6, 2011.
  27. [27]
    Ansmann Racing, [Online], Available: http://www.ansmannracing.com/, June 6, 2011.
  28. [28]
    H. Olsson, K. Astrom, C. Canudas de Wit, M. Gafvert, P. Lischinsky. Friction models and friction compensation. European Journal of Control, vol. 4, no. 3, pp. 176–195, 1998.zbMATHGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Nazmul Huda
    • 1
    Email author
  • Hong-Nian Yu
    • 1
  • Samuel Oliver Wane
    • 1
  1. 1.Faculty of Computing, Engineering and TechnologyStaffordshire UniversityStaffordUK

Personalised recommendations