The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining

Article

Abstract

One of the major tasks in a molecular dynamics (MD) simulation is the selection of adequate potential functions, from which forces are derived. If the potentials do not model the behaviour of the atoms correctly, the results produced from the simulation would be useless. Three popular potentials, namely, Lennard-Jones (LJ), Morse, and embedded-atom method (EAM) potentials, were employed to model copper workpiece and diamond tool in nanometric machining. From the simulation results and further analysis, the EAM potential was found to be the most suitable of the three potentials. This is because it best describes the metallic bonding of the copper atoms; it demonstrated the lowest cutting force variation, and the potential energy is most stable for the EAM.

Keywords

Interatomic potentials molecular dynamics (MD) nanomachining modelling material removal 

References

  1. [1]
    K. K. B. Hon, B. T. H. T. Buharudin. The impact of high speed machining on computing and automation. International Journal of Automation and Computing, vol. 3, no. 1, pp. 63–68, 2006.CrossRefGoogle Scholar
  2. [2]
    X. Chen, T. Limchimchol. Monitoring grinding wheel redress-life using support vector machines. International Journal of Automation and Computing, vol. 3, no. 1, pp. 56–62, 2006.CrossRefGoogle Scholar
  3. [3]
    R. Rentsch. Nanoscale cutting. Nano and Micromachining, J. P. Davim, M. J. Jackson, Eds., USA: Wiley-ISTE, pp. 1–24, 2008.Google Scholar
  4. [4]
    A. O. Oluwajobi, X. Chen. The effect of interatomic potentials on nanometric abrasive machining. In Proceedings of the 16th International Conference on Automation and Computing, Birmingham, UK, pp. 130–135, 2010.Google Scholar
  5. [5]
    A. O. Oluwajobi, X. Chen. The fundamentals of modelling abrasive machining using molecular dynamics. International Journal of Abrasive Technology, vol. 3, no. 4, pp. 354–381, 2010.CrossRefGoogle Scholar
  6. [6]
    B. J. Alder, T. E. Wainwright. Studies in molecular dynamics. I. general method. Journal of Chemical Physics, vol. 31, no. 2, pp. 459–466, 1959.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. F. Belak, I. F. Stowers. A molecular dynamics model of the orthogonal cutting process. In Proceedings of the American Society of Precision Engineering, ECD, New York, USA, pp. 76–79, 1999.Google Scholar
  8. [8]
    J. Belak, I. F. Stowers. The indentation and scratching of a metal surface: A molecular dynamics study. Fundamentals of Friction: Macroscopic and Microscopic, Pollock, Ed., USA: Singer, pp. 1–10, 1991.Google Scholar
  9. [9]
    R. Rentsch, I. Inasaki. Molecular dynamics simulation for abrasive processes. Annals of the CIRP, vol. 43, no. 1, pp. 327–330, 1994.CrossRefGoogle Scholar
  10. [10]
    R. Komanduri, N. Chandrasekaran, L. M. Raff. Effect of tool geometry in nanometric cutting: A molecular dynamics simulation approach. Wear, vol. 219, no. 1, pp. 84–97, 1998.CrossRefGoogle Scholar
  11. [11]
    R. Komanduri, L. M. Raff. A review on the molecular dynamics simulation of machining at the atomic scale. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 215, no. 12, pp. 1639–1672, 2001.Google Scholar
  12. [12]
    S. D. Kenny, D. Mulliah, C. F. Sanz-Navarro, R. Smith. Molecular dynamics simulations of nanoindentation and nanotribology. Philosophical Transactions of the Royal Society A, vol. 363, no. 1833, pp. 1949–1959, 2005.CrossRefGoogle Scholar
  13. [13]
    R. Smith, D. Christopher, S. Kenny. Defect generation and pileup of atoms during nanoindentation of Fe single crystals. Physical Review B, vol. 67, no. 24, pp. 1–10, 2003.Google Scholar
  14. [14]
    K. Cheng, X. Luo, R. Ward, R. Holt. Modeling and simulation of the tool wear in nanometric cutting. Wear, vol. 255, no. 7–12, pp. 1427–1432, 2003.CrossRefGoogle Scholar
  15. [15]
    J. Shimizu, H. Eda, M. Yoritsune, E. Ohmura. Molecular dynamics simulations of friction on the atomic scale. Nanotechnology, vol. 9, no. 2, pp. 118–123, 1998.CrossRefGoogle Scholar
  16. [16]
    G. P. Potirniche, M. F. Horstemeyer, G. J. Wagner, P. M. Gullett. A molecular dynamics study of void growth and coalescence in single crystal nickel. International Journal of Plasticity, vol. 22, no. 2, pp. 257–278, 2006.MATHCrossRefGoogle Scholar
  17. [17]
    K. J. Zhao, C. Q. Chen, Y. P. Shen, T. J. Lu. Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Computational Materials Science, vol. 46, no. 3, pp. 749–754, 2009.CrossRefGoogle Scholar
  18. [18]
    J. Li. Basic molecular dynamics. Handbook of Materials Modelling, S. Yip, Ed., Berlin, Germany: Springer, pp. 565–588, 2005.CrossRefGoogle Scholar
  19. [19]
    A. Leach. Molecular Modelling: Principles and Applications, New Jersey, USA: Prentice Hall, 2001.Google Scholar
  20. [20]
    F. Ercolessi. A Molecular Dynamics Primer, [Online], Available: http://www.fisica.uniud.it/~ercolessi/md/md/, March 5, 2011.
  21. [21]
    R. Komanduri, N. Chandrasekaran, L. M. Raff. Some aspects of machining with negative-rake tools simulating grinding: A molecular dynamics simulation approach. Philosophical Magazine Part B, vol. 79, no. 7, pp. 955–968, 1999.CrossRefGoogle Scholar
  22. [22]
    Y. Ye, R. Biswas, J. R. Morris, A. Bastawros, A. Chandra. Simulation of nanoscale polishing of copper with molecular dynamics. In Proceedings of Materials Research Society Symposium, vol. 732E, pp. 1–6, 2002.Google Scholar
  23. [23]
    B. Lin, S. Y. Yu, S. X. Wang. An experimental study on molecular dynamics simulation in nanometer grinding. Journal of Materials Processing Technology, vol. 138, no. 1–3, pp. 484–488, 2003.CrossRefGoogle Scholar
  24. [24]
    E. Brinksmeier, J. C. Aurich, E. Govekar, C. Heinzel, H. W. Hoffmeister, F. Klocke, J. Peters, R. Rentsch, D. J. Stephenson, E. Uhlmann, K. Weinert, M. Wittmann. Advances in modeling and simulation of grinding processes. Annals of the CIRP, vol. 55, no. 2, pp. 667–696, 2006.CrossRefGoogle Scholar
  25. [25]
    Q. X. Pei, C. Lu, F. Z. Fang, H. Wu. Nanometric cutting of copper: A molecular dynamics study. Computational Materials Science, vol. 37, no. 4, pp. 434–441, 2006.CrossRefGoogle Scholar
  26. [26]
    R. Promyoo, H. E. Mounayri, X. Yang. Molecular dynamics simulation of nanometric machining under realistic cutting conditions. In Proceedings of ASME International Conference on Manufacturing Science and Engineering, Evanston, IL, USA, pp. 235–243, 2008.Google Scholar
  27. [27]
    J. Tersoff. New empirical approach for the structure and energy of covalent systems. Physical Review B, vol. 37, no. 12, pp. 6991–7000, 1988.CrossRefGoogle Scholar
  28. [28]
    J. Tersoff. Empirical interatomic potential for silicon with improved elastic properties. Physical Review B, vol. 38, no. 14, pp. 9902–9905, 1988.CrossRefGoogle Scholar
  29. [29]
    J. H. Li, X. D. Dai, S. H. Liang, K. P. Tai, Y. Kong, B. X. Lin. Interatomic potentials of the binary transition metal systems and some applications in materials physics. Physics Reports, vol. 455, no. 1–3, pp. 1–134, 2008.CrossRefGoogle Scholar
  30. [30]
    J. E. Lennard-Jones. On the forces between atoms and ions. Proceedings of the Royal Society of London, vol. 109, no. 752, pp. 584–597, 1924.Google Scholar
  31. [31]
    P. M. Morse. Diatomic molecules according to the wave mechanics II vibrational levels. Physical Review, vol. 34, no. 1, pp. 57–64, 1929.CrossRefGoogle Scholar
  32. [32]
    S. M. Foiles. Application of the embedded atom method to liquid transition metals. Physical Review B, vol. 32, no. 6, pp. 3409–3415, 1985.CrossRefGoogle Scholar
  33. [33]
    S. M. Foiles, M. I. Baskes, M. S. Daw. Emdedded-atommethod functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, vol. 33, no. 12, pp. 7983–7991, 1986.CrossRefGoogle Scholar
  34. [34]
    M. Cai, X. Li, M. Rahman. Molecular dynamics modelling and simulation of nanoscale ductile cutting of silicon. International Journal of Computer Applications in Technology, vol. 28, no. 1, pp. 2–8, 2007.CrossRefGoogle Scholar
  35. [35]
    Y. Guo, Y. Liang, M. Chen, Q. Bai, L. Lu. Molecular dynamics simulations of thermal effects in nanometric cutting process. Science China Technological Sciences, vol. 53, no. 3, pp. 870–874, 2010.MATHCrossRefGoogle Scholar
  36. [36]
    W. C. D. Cheong, L. Zhang, H. Tanaka. Some essentials of simulating nano-surface processes using the molecular dynamics method. Key Engineering Materials, vol. 196, pp. 31–42, 2001.CrossRefGoogle Scholar
  37. [37]
    Z. Lin, Z. Chen, J. Huang. Establishment of a cutting force model and study of the stress-strain distribution in nanoscale copper material orthogonal cutting. The International Journal of Advanced Manufacturing Technology, vol. 33, no. 5–6, pp. 425–435, 2007.CrossRefGoogle Scholar
  38. [38]
    S. J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, vol. 117, pp. 1–19, 1995.MATHCrossRefGoogle Scholar
  39. [39]
    Visual Molecular Dynamics (VMD), [Online], Available: http://www.ks.uiuc.edu/Research/vmd/, March 5, 2011.
  40. [40]
    H. J. Hwang, O. K. Kwon, J. W. Kang. Copper nanocluster diffusion in carbon nanotube. Solid State Communications, vol. 129, no. 11, pp. 687–690, 2004.CrossRefGoogle Scholar
  41. [41]
    L. A. Girifalco, V. G. Weizer. Application of the morse potential function to cubic metals. Physical Review, vol. 114, no. 3, pp. 687–690, 1959.CrossRefGoogle Scholar
  42. [42]
    LAMMPS Manual, [Online], Available: http://lammps.sandia.gov/doc/, March 5, 2011.

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre for Precision TechnologiesUniversity of HuddersfieldQueensgate, HuddersfieldUK

Personalised recommendations