Advertisement

Adaptive terminal sliding mode control for rigid robotic manipulators

  • Mezghani Ben Romdhane NeilaEmail author
  • Damak Tarak
Article

Abstract

In order to apply the terminal sliding mode control to robot manipulators, prior knowledge of the exact upper bound of parameter uncertainties, and external disturbances is necessary. However, this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot. To resolve this problem in robot control, we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators. By applying this adaptive controller, prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances. Also, the proposed controller can eliminate the chattering effect without losing the robustness property. The stability of the control algorithm can be easily verified by using Lyapunov theory. The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.

Keywords

Terminal sliding mode sliding mode control adaptive control of robot robust control Lyapunov method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Kelly, V. Santibanez, A. Loria. Control of Robot Manipulators in Joint Space, Berlin, Germany: Springer-Verlag, 2005.Google Scholar
  2. [2]
    Y. Z. Guo, P. Y. Woo. Adaptive fuzzy sliding mode control for robotic manipulators. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE, Maui, USA, vol. 3, pp. 2174–2179, 2003.Google Scholar
  3. [3]
    J. M. Yang, J. H. Kim. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, vol. 15, no. 3, pp. 578–587, 1999.CrossRefGoogle Scholar
  4. [4]
    Q. H. Nguyen, E. Kreuzer. A robust adaptive sliding mode controller for remotely operated vehicles. Technische Mechanik, vol. 28, no. 3–4, pp. 185–193, 2007.Google Scholar
  5. [5]
    U. Vadim, G. Jurgen, J. X. Shi. Sliding Mode Control in Electro-mechanical Systems, UK: CRS Press, 1999.Google Scholar
  6. [6]
    F. Li, H. L. Xie. Sliding mode variable structure control for visual servoing systems. International Journal of Automation and Computing, vol. 7, no. 3, pp. 317–323, 2010.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Benchaib, M. Tadjine, A. Rachid. Sliding mode control of an induction motor with unknown load: Application on a digital-signal-processor-based system. International Journal of Systems Science, vol. 30, no. 8, pp. 849–863, 1999.zbMATHCrossRefGoogle Scholar
  8. [8]
    M. J. Elbrous. Robust sliding mode controllers design techniques for stabilization of multivariable time-delay systems with parameter perturbations and external disturbances. International Journal of Systems Science, vol. 36, no. 7, pp. 433–444, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    B. Bandyopadhyay, A. G/E. Alber, S. Janardhanan, V. Sreeram. Sliding mode control design via reduced order model approach. International Journal of Automation and Computing, vol. 4, no. 4, pp. 329–334, 2007.CrossRefGoogle Scholar
  10. [10]
    X. H. Yu, J. X. Xu. Variable Structure Systems: Towards the 21st Century, Berlin, Germany: Springer-Verlag, 2002.zbMATHCrossRefGoogle Scholar
  11. [11]
    Z. H. Man, A. P. Paplinski, H. R. Wu. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2464–2469, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    K. B. Park, J. J. Lee. Comments on a robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control, vol. 41, no. 5, pp. 761–762, 1996.zbMATHCrossRefGoogle Scholar
  13. [13]
    Z. H. Man, O. Mike, X. H. Yu. A robust adaptive terminal sliding mode control for rigid robotic manipulators. Journal of Intelligent and Robotic Systems, vol. 24, no. 1, pp. 23–41, 1999.zbMATHCrossRefGoogle Scholar
  14. [14]
    P. G. Keleher, R. J. Stonier. Adaptive terminal sliding mode control of a rigid robotic manipulator with uncertain dynamics incorporating constraint inequalities. ANZIAM Journal, vol. 43, pp. 102–153, 2001.MathSciNetGoogle Scholar
  15. [15]
    S. H. Yu, X. H. Yu, R. Stonier. Continuous finite time control for robotic manipulators with terminal sliding modes. In Proceedings of the 6th International Conference of Information Fusion, IEEE, vol. 2, pp. 1433–1440, 2003.Google Scholar
  16. [16]
    Y. C. Huang, T. Z. S. Li. Fuzzy terminal sliding-mode controller for robotic manipulators. In Proceedings of IEEE International Conference on Mechatronics, IEEE, Taipei, Taiwan, pp. 858–863, 2005.Google Scholar
  17. [17]
    Z. H. Man, X. Yu. Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics. JSME International Journal, Series C, vol. 40, no. 3, pp. 493–502, 1997.Google Scholar
  18. [18]
    C. Abdallah, D. Dawson, P. Dortao, M. Jamshidi. Survey of robust control for rigid robots. IEEE Control Systems Magazine, vol. 11, no. 2, pp. 24–30, 1991.CrossRefGoogle Scholar
  19. [19]
    D. M. Wang. The design of terminal sliding controller of two-link flexible manipulators. In Proceedings of IEEE International Conference on Control and Automation, IEEE, Guangzhou, PRC, pp. 733–737, 2007.CrossRefGoogle Scholar
  20. [20]
    X. H. Yu, Z. H. Man. On finite time mechanism: Terminal sliding modes. In Proceedings of IEEE International Workshop on Variable Structure Systems, IEEE, Tokyo, Japan, pp. 164–167, 1996.Google Scholar
  21. [21]
    H. Liu, J. F. Li. Terminal sliding mode control for spacecraft formation flying. IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3, pp. 835–846, 2009.CrossRefGoogle Scholar
  22. [22]
    B. Ahcene, B. Fares, L. Salim. A neuro-fuzzy-sliding mode controller using nonlinear sliding surface applied to the coupled tanks system. International Journal of Automation and Computing, vol. 6, no. 1, pp. 72–80, 2009.CrossRefGoogle Scholar
  23. [23]
    M. B. R. Neila, D. Tarak. Terminal sliding mode control for robotic manipulators with uncertain dynamics and bounded disturbance. In Proceedings of the 10th International Conference on Sciences and Techniques, pp. 1641–1652, 2009.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Industrial Processes Control Unit, National Engineering School of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations